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A B S T R A C T   

As a pivotal component in robotic systems, harmonic reducer fault diagnosis plays a crucial role in safe and stable 
operation; however, the lack of labelled fault samples hampers its effectiveness. This study introduces a self- 
constructed graph graph-autoencoder fault feature extractor (SCG-GFFE), a novel method that uses the Graph 
Auto-encoder (GAE) algorithm. SCG-GFFE leverages Graph Neural Networks (GNNs) for the unsupervised 
extraction of fault features, enhancing fault diagnosis in scenarios with limited labelled data. This approach 
overcomes the challenges of graph construction for fault diagnosis, particularly for single-sensor vibration sig-
nals. First, we developed the SCG-GFFE method for efficient fault feature extraction, which does not require 
complex domain expertise and is capable of generating graph structures. Second, we designed a suitably 
structured subgraph for dealing with single, unlabelled, non-multisource vibration signals. Third, a real-world 
harmonic reducer’s vibrational signal is utilised to build an experimental study and demonstrate the effective-
ness of the SCG-GFFE method. The results of SCG-GFFE demonstrate remarkable accuracy in fault diagnosis, 
consistently exceeding 98% across various classifiers, and indicate that the proposed method can solve the 
problem of limited labelled data in harmonic reducer diagnosis.   

1. Introduction 

In the context of Industry 4.0, traditional manufacturing is rapidly 
shifting towards intelligent and automated processes, with robots being 
a central focus. Owing to the collaborative nature of robots in industrial 
production, a single robot malfunction can disrupt the entire workflow, 
emphasising the need for preemptive maintenance. Harmonic reducers, 
known for their compactness, precision, high reduction ratio, and low 
noise, are integral components of robots [1]. Therefore, diagnosing 
faults in harmonic reducers is crucial owing to their significant role in 
robotic operations. 

Currently, both academia and industry are yet to delve deeply into 
the field of harmonic reducer fault research. Existing theoretical 
achievements in this area are also scattered, resulting in a lack of robust 
theoretical underpinnings for the fault diagnosis of harmonic reducers. 
Recently, fault-diagnosis research based on deep learning has witnessed 

significant advancements. It encompasses various techniques such as 
convolutional neural networks (CNNs) [2], recurrent neural networks 
(RNNs) [3], autoencoders (AEs) [4], deep belief networks (DBNs) [5], 
and contrastive learning [6], all of which have demonstrated 
commendable outcomes. For example, Yao [7] proposed an adversarial 
domain adaptation network with pseudo-siamese feature extractors 
(PSFEN) to improve the performance of the cross-bearing fault transfer 
diagnosis. Wang [8] proposed a refined prototype and correlation 
weighting Manhattan distance (RPCMN) to solve the few samples and 
the inevitable noise from the vibration signals. Wang [9] proposed a 
Brownian correlation metric prototypical network (BCMPN) algorithm 
to solve the problem of few samples in the training source domain and 
zero samples in the test target domain (FST-ZST). All these three refer-
ences investigated the common problem of vibration fault diagnosis, 
including various working conditions, few fault samples, cross-domains, 
and so on. However, intelligent fault diagnosis of harmonic reducers 

* Corresponding author. 
E-mail addresses: sslmy526@gmail.com, sunshilong@hit.edu.cn, shilosun-c@my.cityu.edu.hk (S. Sun).  

Contents lists available at ScienceDirect 

Advanced Engineering Informatics 

journal homepage: www.elsevier.com/locate/aei 

https://doi.org/10.1016/j.aei.2024.102579 
Received 3 November 2023; Received in revised form 7 March 2024; Accepted 26 April 2024   

mailto:sslmy526@gmail.com
mailto:sunshilong@hit.edu.cn
mailto:shilosun-c@my.cityu.edu.hk
www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2024.102579
https://doi.org/10.1016/j.aei.2024.102579
https://doi.org/10.1016/j.aei.2024.102579
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2024.102579&domain=pdf


Advanced Engineering Informatics 62 (2024) 102579

2

remains limited. Zhi [10] introduced the WRCTD algorithm for 
denoising sensor data, followed by CNN-LSTM for accurate fault-type 
diagnosis. Liu [11] applied WRCTD to AE signals and then combined 
OMA and VMD for fault feature extraction. He [12] addressed multiscale 
harmonic reducers using MSMCNN. Zhou [13] designed an adaptive 1-D 
MCNN model for effective contextual feature extraction from continuous 
signal data. Yang [14] proposed SDP-ConvNeXt for converting vibration 
signals into SDP images and using ConvNeXt with Transformer for 
efficient fault classification. Yang [15] used GANs for imbalanced har-
monic reducer fault data and MSCNN for high-accuracy multi-class fault 
classification. In sum, it can be concluded from refers [10] to [15] that 
the essence of traditional deep learning approaches in fault diagnosis, 
which often treat sample data as points in Euclidean space and process 
them as sequences or matrices, primarily through CNNs, focuses on 
leveraging the models’ capability to extract intrinsic features from in-
dividual samples. However, these methods usually operate under the 
assumption that samples are independently and identically distributed, 
thereby neglecting the intrasample correlation information crucial for 
diagnosing complex or subtle fault patterns. To overcome these limita-
tions, there’s a shift towards advanced models like RNNs, LSTMs, GNNs, 
attention mechanisms, Transformers, and hybrid models. These ap-
proaches aim to better capture temporal or relational dependencies 
between samples, enhancing the ability to identify faults in complex 
systems by not only analyzing intrinsic features within individual sam-
ples but also considering the dynamic interrelationships among them, 
thus offering a more nuanced and comprehensive approach to fault 
diagnosis. 

To better understand the interconnections between data samples, 
more focus is given to graph data and Graph Neural Network (GNN) 
methods. These methods are effective because they use graph data, 
where samples are linked through edges, making it easier to represent 
complex nonlinear relationships, particularly in non-Euclidean spaces. 
Noteworthy graph neural network architectures include Graph Con-
volutional Networks (GCNs) [16], GAEs [17], Graph Attention Networks 
(GATs), graph generative networks, and graph spatiotemporal networks 
(S-T GNNs) [18]. Currently, the primary domains for GNNs are still 
within recommender systems [16], bioinformatics [17], transportation 
and urban planning [18], and social network analysis [19]. However, 
their applications in fault diagnosis remain relatively limited. None-
theless, there has been a gradual increase in research in this area in 
recent years. Zhang [19] proposed a multi-head graph neural network 
based on triplet metric combined with decoupled adversarial learning. 
This approach transforms multidimensional vibration signals into graph 
structures using L2 distance and triplet loss, along with multihead 
attention mechanisms and multidomain decoupled adversarial learning 

to adapt to complex unknown conditions in the target domain, yielding 
significant performance improvements. Yu [20] introduced a novel 
rolling bearing fault diagnosis framework. This framework employs a 
CNN to extract fault features, coupled with dynamic graph embedding 
and a GNN for capturing fault feature sensitivities under fluctuating 
conditions. A node-voting mechanism is incorporated to optimise the 
recognition results. Tang [21] synergistically leveraged the strengths of 
semi-supervised Conditional Random Fields and Graph Attention Net-
works, proposing the CRF-GAT algorithm. By modelling label de-
pendencies and learning object representations, this approach facilitates 
semi-supervised fault diagnosis and effectively addresses real-world 
problems with limited data. Yang [22] introduced a method based on 
Deep Capsule Graph Convolutional Networks (DCGCN). By integrating 
multisensor data spectral analysis and graph convolutional networks, 
this method effectively diagnoses complex composite faults in industrial 
robot harmonic transmissions under varying conditions. Chen [23] 
tackled difficult industrial process fault diagnosis by transforming 
sensor signals into heterogeneous graphs with multiple edge types. An 
Interactive-aware Graph Neural Network (IAGNN) was proposed, which 
adaptively learns edge weights through attention mechanisms. This 
approach exhibits a superior performance in fault diagnosis across 
various industrial processes. These studies have mainly focused on 
multidimensional signals or signals acquired from multiple sensors. 
They employed techniques based on prior knowledge and signal pro-
cessing to assess the distances between faulty samples, construct graph 
data structures, and carefully consider and design the choice and uti-
lisation of graph models for fault diagnosis. Furthermore, most current 
methods predominantly emphasise supervised learning, relying heavily 
on label quantity and quality, whereas research on semi-supervised or 
unsupervised methods to alleviate the demand for labelled samples re-
mains limited. 

When addressing the application of GNNs in fault diagnosis, two 
primary challenges emerge: the construction of graph data and the se-
lection of appropriate graph models [24]. When selecting appropriate 
graph learning models, a targeted choice must be made based on specific 
task requirements and the particular characteristics of graph data. In 
real industrial settings, the volume of data required for intelligent fault 
diagnosis may be substantial, whereas the actual availability of mean-
ingful data is restricted. In addition, many data points lack corre-
sponding labels for the fault types [25]. Opting for data reacquisition or 
reannotation may incur substantial additional costs and pose inherent 
risks. Therefore, the direct application of semi-supervised or unsuper-
vised fault diagnosis methods has profound significance because it can 
significantly reduce the demand for labelled data [26–28]. As illustrated 
in Fig. 1, in the realm of graph learning, graph embedding tasks 

Fig. 1. Graph learning landscape: Interplay between graph embedding and GNN models.  
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represent essential unsupervised learning endeavors [29]. In this 
context, the GAE algorithm is one of the most suitable graph neural 
network models [30]. 

Furthermore, because of the absence of inherent relational graphs 
among the sensor signal data used in fault diagnosis, unlike in social 
networks, the construction of relationships between data points is of 
paramount importance. This significantly influences the quality and 
upper limits of the subsequent graph-based learning outcomes. Only 
with a well-constructed graph data structure can the advantages of 
graph neural networks be fully realised to achieve effective feature 
extraction. Building a suitable graph data structure involves selecting 
data points as nodes and establishing the connections between them. 
Generally, for complex systems or mechanical equipment with multiple 
data sources [31–34], richer data availability makes it easier to explore 
the relationships between nodes and thereby establish connections. 
However, collecting multi-source data in practical industrial settings 
may require diverse types of specialised sensors, resulting in higher 
costs. Additionally, specific data collection processes may require 
equipment disassembly to instal sensors in specific locations, leading to 
increased time and complexity [35,36]. Consequently, in many cases, it 
is more convenient to collect only the vibration signals during equip-
ment operation. This approach is not only time- and cost-effective but 
also more straightforward. Nevertheless, for single-vibration signal data, 
owing to the limited data types, the expressive power of graph data 
structures is relatively constrained. The space for constructing operable 
graph data is limited, making it more challenging to devise suitable 
graph-data structures. Currently, when utilising graph machine learning 
or GNN methods for fault diagnosis, typical approaches to graph con-
struction can be broadly categorised into two types: those based on K- 
nearest neighbour (KNN) algorithms [37,38] and those based on prior or 
expert knowledge [39]. The former method is relatively straightforward 
but possesses a certain degree of randomness. It relies heavily on the 
classification effectiveness of KNN for data features, which may result in 
insufficient reliability. When the features between different data types 
are not sufficiently distinct and cannot be effectively separated using the 
KNN method, erroneous connection relationships may easily emerge, 
introducing significant risks for subsequent graph-based learning. The 
latter approach requires deep understanding of domain knowledge. It 
also necessitates specific analyses of different research subjects or sce-
narios involving the same research subject. However, this approach 
tends to be complex, challenging, and less universally applicable. 

Therefore, this study focuses on exploring a simpler, more straight-
forward, and universally applicable approach for constructing graph 
data. Specifically, this study addresses the context of single-variable 
vibration signals (acquired from a single sensor, with each sample 
containing only one variable). The objective is to investigate a more 
direct and general method for constructing graph data, avoiding the 
limitations of both KNN and domain-specific knowledge approaches. 
This research strives to create an effective graph data structure without 
relying on complex signal processing or numerical computations, while 
still using the GAE network for unsupervised fault feature extraction. 
This study aims to utilise GNN algorithms for the processing and fault 
feature extraction of unlabelled, single-source vibration signal data from 
harmonic reducers. The main contributions of this study are as follows.  

(1) We propose a GNN-based fault feature extraction method called 
SCG-GFFE, which enables both unsupervised and semi- 
supervised learning and facilitates swift and efficient extraction 
of fault features for diverse downstream tasks. 

(2) A self-constructed graph approach for univariate signals is pro-
posed, which can enable the creation of appropriate graph- 
structured data from singular non-multi-source vibration signals.  

(3) An actual harmonic reducer testbed is designed and utilized, and 
can collect the experimental vibration signal under various fault 
conditions and operational scenarios. 

The remainder of this paper is organised as follows. Section II pre-
sents an introduction to GCN and GAE networks. Section III outlines the 
specific operations of SCG-GFFE. Section IV presents details of the 
experimental research and its results. Section V summarises the work 
conducted in this study. 

2. Preliminary related works-GCN and GAE algorithms 

Consider an undirected graph denoted as G(V,E), where V signifies 
the collection of nodes constituting the graph, and E symbolizes the 
collection of interconnecting edges among these nodes. Every node 
within this graphical framework is endowed with a unique feature 
vector. The entirety of these feature vectors, collectively forming a 
matrix, is designated as X. Specifically, X ∈ RN×C, wherein N charac-
terizes the count of nodes encompassed by the graph, and denotes the 
dimensionality of each node’s corresponding feature vector. This matrix 
X is commonly recognized as the feature matrix, serving as a compre-
hensive embodiment of the distinct node attributes inherent to the 
graph. 

Furthermore, for the purpose of capturing potential connections 
between nodes within the graph, an adjacency matrix denoted as A ∈

RN×N is introduced. In this matrix, if an edge connects the i − th node u 
with the j − th node v, the corresponding entry Aij is set to 1; otherwise, it 
remains 0. Notably, in the context of an undirected graph, matrix A is 
naturally constrained to exhibit symmetry, implying that Aij is equiva-
lent to Aji. In simple terms, matrix X captures the feature information of 
the graph, while matrix A encodes the structural information of the 
graph; it is only when these two matrices are combined that a complete 
representation of a graph data structure can be achieved. 

Because graph structures exist in non-Euclidean spaces, their con-
volutional expressions differ from those in CNNs, making direct spatial- 
domain processing more challenging. Thus, to facilitate the convolution 
operation, both convolution signals must be transformed into the fre-
quency domain. This transformation allows the convolution of the graph 
signals to be equated to a multiplication operation in the frequency 
domain. Following this, an inverse transformation is applied to restore 
the results back to the spatial domain, effectively realising the graph 
convolution operation, as illustrated in the following equation [16]: 

gθ ∗ x ≈ θ
(

IN + D− 1
2AD− 1

2

)
x (1)  

where gθ denotes the filter, x ∈ RN represents the signal, IN denotes the 
N − th order identity matrix, and D symbolizes the degree matrix, which 
can be computed using the following equation: 

Dij =

{∑

k
Aik, i = j

0, i ∕= j
(2)  

To mitigate the issue of gradient explosion, a renormalization operation 

is applied, transforming 
(

IN +D− 1
2AD− 1

2

)
into D̃− 1

2ÃD̃− 1
2. Moreover, 

extending the formula mentioned above from scalars to matrices, the 
expression for graph convolution can be derived as shown in the 
following equation: 

Xconv = D̃− 1
2ÃD̃− 1

2XΘ (3) 

Here, Θ ∈ RC×F represents the parameter matrix of the filter, Xconv ∈

RN×F stands for the convolved signal matrix, and the node vectors can be 
transformed from C dimensions to F dimensions through the convolution 
operation. Besides, D̃ can be calculated using the following two 
equations: 

D̃ij =

{∑

k
Ãik, i = j

0, i ∕= j
(4) 
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Ã = A+ IN (5) 

Hence, the final form of GCN can be represented by the following 
equation[16]: 

X(l+1) = f
(
X(l),A

)
= σ
(

ÂX(l)W(l)) = σ
(

D̃− 1
2ÃD̃− 1

2X(l)W(l)
)

(6) 

Here, X(l) and X(l+1) represent the feature matrices for the input and 
output of the l − th convolutional layer, respectively. The function f 
represents the specific graph convolution operation for each layer. The 
l − th layer’s parameter matrix W(l) contains the trainable parameter set 
optimized during the training process. Within the architecture of each 
GCN layer, the computation of node features is achieved by combining A 
with X(l). Subsequently, these computed node features are fused with the 

adaptive parameters W(l) to form a new feature matrix denoted as X(l+1). 
It is important to emphasise that, after the output of each graph con-
volutional layer, a nonlinear activation function is typically applied 
(often using ReLU, for example). Introducing this nonlinear activation 
function enhances the network’s ability to recognise complex patterns 
and derive more detailed and information-rich representations from 
underlying graph data. 

A more intuitive perspective emerges from Fig. 2, wherein graph 
convolution can be envisioned as a process that involves transforming 
the features of all neighbouring nodes (e.g. node u) and subsequently 
aggregating these transformed features to update the characteristics of 
node u[40]. 

Furthermore, as evident from Fig. 3, the architecture of the GAE is 
notably streamlined and aligns with the principles of auto-encoders. The 

Fig. 2. Intuitive illustration of graph convolution algorithm.  

Fig. 3. Intuitive illustration of GAE algorithm.  
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process entails obtaining node embeddings within the graph using the 
graph neural network algorithm (encoder phase), followed by recon-
struction of the inherent features of the original graph based on the 
specific task (decoder phase). In general, the encoder phase adopts a 
two-layer GCN structure, whereas the decoder phase employs an inner- 
product structure to reconstruct the adjacency matrix of the graph. 

3. The procedure of the proposed method 

In this section, considering the context of practical industrial appli-
cations, we delve into the ideation and step-by-step implementation of 
the proposed fault feature extraction methodology for unlabelled har-
monic reducer vibration signal data. Additionally, this section encom-
passes the strategy for evaluating the efficacy of feature extraction, 
providing a comprehensive examination of the experimental procedures 
undertaken in this study. 

3.1. Self-construction of graph data 

As depicted in Fig. 4, for vibration signal data samples, assuming 
preliminary data analysis and preprocessing steps have been performed 
(e.g., normalisation, Fourier transformation), each obtained sample is 
temporarily referred to as a “preprocessed sample”. Subsequently, the 
construction of the graph data was necessary. Given our focus on un-
supervised learning based on GNNs for extracting fault features, repre-
senting learning takes precedence. This entails a node-level task, 
commonly known as a graph or node embedding. Each sample (repre-
senting a segment of the vibration signal) was treated as a node. By 
establishing connections between nodes and utilising GNN methods, the 
vector representations for each node are derived. Considering the task 
requirements and challenges in constructing the graph model, we 
partition the vibration signal of each preprocessed sample into several 
segments in chronological order to avoid erroneous graph construction. 
Among these segments, a selective subset of K segments was chosen. 

Consequently, each original sample was divided into K new samples 
of equal length (assuming length L). Next, these new K samples can be 
treated as K nodes, where each sample’s vibration signal serves as an 

attribute feature of the corresponding node. Subsequently, an undi-
rected complete graph is constructed in which the weight of each edge is 
determined by the cosine distance between the two connected nodes. 
Suppose that nodes u and v are connected by an edge. The expression in 
the equation below defines the cosine distance between them: 

dist(u, v) = 1 −
Zu • Zv

‖Zu‖ • ‖Zv‖
(7)  

where Zu and Zv are two vectors representing the attribute features of 
nodes u and v, denotes the vectors’ dot product (inner product), ‖Zu‖ and 
‖Zv‖ represent the norms (magnitudes) of vectors Zu and Zv . 

Subsequently, utilising the Complete Graph derived from K nodes as 
a subgraph, each preprocessed sample yields an analogous subgraph. 
Ultimately, amalgamating all these subgraphs results in a comprehen-
sive graph structure dataset, with no edges connecting the subgraphs. 

3.2. GAE fault feature extractor 

This section presents the GFFE designed for unsupervised learning of 
unlabelled data. The framework and overall flowchart of the proposed 
method are shown in Fig. 5. The structure of the GAE fault feature 
extractor described in this study is illustrated in the diagram. After 
obtaining the final graph data, it is used as the input for the forward 
propagation process. It undergoes the GCNConv1, BatchNorm, ReLU, 
and GCNConv2 layers sequentially (combined as the Encoder module) 
for feature processing, resulting in the extracted feature matrix Z. Sub-
sequently, the matrix is fed into the Decoder module, where it is 
multiplied with its own transpose matrix ZT and passed through a sig-
moid activation function, yielding the reconstructed adjacency matrix 
Â, as expressed by the following equation: 

Â = sigmoid
(
Z • ZT) (8) 

Finally, the loss function L can be computed as shown in the equa-
tions below: 

L = L recon+ α ∗ L kl+ β ∗ L reg (9) 

Fig. 4. Illustration of the self-constructed graph approach.  

S. Sun et al.                                                                                                                                                                                                                                      



Advanced Engineering Informatics 62 (2024) 102579

6

Fig. 5. Framework and flowchart of the proposed SCG-GFFE method.  
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L recon= −

∑N
i=1
∑N

j=1

(
Aij⋅log

(
Âij +10− 10

)
+
(
1 − Aij

)
⋅log
(
1 − Âij +10− 10

)
)

N2

(10)  

L kl = − 0.5 ×

(
1

N × N

∑N

i=1

∑N

j=1

(
1 + log

(
Z2

ij + 10− 10
)
− Z2

ij − h2

))

(11)  

L reg =
∑N

i=1

∑N

j=1
Z2

ij (12)  

where L recon represents the reconstruction loss, N represents the 
number of nodes in the graph, and Aij denotes the elements of the ad-
jacency matrix of the graph structure data, and Âij denotes the elements 
of the reconstructed adjacency matrix. L kl corresponds to the loss 
associated with the KL divergence, Zij represents the elements of the 
feature matrix obtained from the encoder, and h represents the dimen-
sion of the hidden layer in the encoder. Moreover, L reg is the e regu-
larization loss, where β is the regularization coefficient. Furthermore, 
both α and β are constant coefficients, which are used to balance the 
contributions of various loss terms. 

Regarding the reconstruction loss, cross-entropy loss is employed 
here to quantify the disparity between Â and A. This served as a metric 
for evaluating the reconstruction capability of the model. In a GAE 
model, the objective of the reconstruction error term is to enable the 
decoder to accurately restore the input data, thereby preserving the 
essential information from the original data. By optimising the recon-
struction loss, the model is compelled to extract meaningful features 
from graph data that are sensitive to the structure and information of the 
graph. This allows the model to capture the key patterns and correla-
tions present in the data. 

On the other hand, the Kullback-Leibler (KL) divergence is used to 
measure the discrepancy between the encoder’s output Z and a pre-
defined prior distribution. In unsupervised learning, KL divergence is 

commonly employed to learn the continuous distribution of the latent 
space. The objective of the L kl term is to guide the encoder’s output to 
adhere to the prior distribution in the latent space, promoting the 
learning of more discriminative and generalizable feature representa-
tions. Specifically, in this context, L kl measures the disparity between Z 
and a standard Gaussian distribution. The learned features exhibit better 
continuity and a more interpretable structure when the encoder’s output 
distribution is aligned with a standard Gaussian distribution. Moreover, 
the regularisation loss component aims to encourage elements within 
the encoded matrix to approach zero, thereby reducing the complexity 
of the model and preventing overfitting, thereby enhancing its gener-
alisation capability. Throughout the training process, this loss in-
troduces supplementary constraints on parameter gradients, nudging 
the model towards acquiring simpler, smoother representations that can 
better adapt to variations in unfamiliar data. Ultimately, by summing 
these three loss terms and applying weighting factors α and β, the 
reconstruction loss, regularisation loss, and KL divergence aspects are 
effectively balanced within the loss function[41]. The aim is to achieve 
enhanced model training and generation outcomes. 

Therefore, after obtaining L, minimizing it through backpropagation 
is performed to train the parameter matrices within the GCN layers. This 
process yielded a well-suited GAE model. Subsequently, by inputting the 
constructed graph data into the trained GAE model, Z is extracted, which 
represents the fault features extracted by the feature extractor. 

3.3. Classification head 

After performing feature extraction, it is necessary to conduct actual 
classification validation using the extracted features to assess the 
effectiveness of the extracted fault features[42]. Considering the prac-
tical industrial context, purely unsupervised fault diagnosis may not be 
sufficiently reliable because of the absence of labelled references. In real 
industrial settings, discrepancies between fault diagnosis results and 
actual conditions can lead to potential accidents, resulting in production 
losses or even personal safety hazards. Additionally, although many data 
samples generally lack labels, not all samples are completely unlabelled. 

Fig. 6. Harmonic reducer test bench system setup.  
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To address this, we assigned labels to all samples after feature extrac-
tion. Subsequently, a small proportion of each fault category sample was 
selected as the training set, while the remaining samples served as the 
testing set. Basic machine learning classification models were chosen for 
supervised training using the training set. The trained classifiers were 
then tested using the testing set to evaluate their diagnostic perfor-
mance, thus assessing the quality of the extracted features. As the 
training set had limited data, while the testing set was more extensive, 
the testing results were considered reliable. This training method is 
effective because it matches real-world situations in which only a few 
labelled samples are available for supervised training. If a classifier 
performs well under these conditions, it suggests that the features it 
extracts are suitable for identifying faults. Additionally, it involves 
splitting the feature space into two parts for training and testing with 
similar classifiers. If a classifier trained on the newly extracted features 
performs better than a classifier trained on the original features, it in-
dicates that the extracted features are more informative for fault 
detection. This outcome implies that the feature-extraction process was 
successful. 

4. Experimental results and comparisons 

4.1. Harmonic reducer test bench design and dataset 

As illustrated in Fig. 6, in this study, we designed a practical and 
versatile harmonic reducer test system to collect authentic and reliable 
data on harmonic reducer faults. This system comprises a test bench 
with a faulty harmonic reducer, acceleration sensors, an NI data system, 
and fault-signal acquisition software, among other components. The test 
bench consists of a control system, drive motor, load motor, torque- 
speed meter, planetary gearbox, and dynamic torque sensor, among 
others. Customised faulty components can be manufactured during the 
experiments and replaced on the harmonic reducer of the test bench to 
simulate various fault scenarios. The control panel provides an intuitive 
interface for the parameter settings. The presence of the torque-speed 
meter and dynamic torque sensor enables real-time monitoring of 
input-rated torque, load torque, input speed, output speed, and other 
data. While the test bench is operational, the drive motor provides the 
rated input torque, and the load torque is supplied by the motor at the 
load end, simulating the operation of the harmonic reducer under 
realistic loads. For data collection, the digital control panel allowed us to 
intuitively control the input speed and load torque, facilitating data 
collection under various operating conditions. Load torque was 
measured as a percentage of the rated input torque. 

However, it is essential to note that operating faulty components 
under high loads and high speeds may lead to part failure. The test bench 

was equipped with corresponding safety measures and an emergency 
stop button to ensure safety. Therefore, data collection practices for 
high-load and high-speed scenarios should not be overly prolonged. 

Continuing from the previously described harmonic reducer test rig, 
several typical faulty components were manufactured for experimenta-
tion and data collection. Three fault types and one normal state data 
point were collected, as summarised in Table 1. The three fault types in 
this study were identified as “Wave generator stuttering”, ”Output shaft 
bearing misalignment”, and “Flex spline pitting”, in addition to the 
”Normal“ state. These data types are briefly represented as ”normal,“ 
”stuttering,“ ”misalignment,“ and ”pitting.“ The sampling frequency was 
fixed at 25600 Hz throughout the data collection process, with rota-
tional speeds of 600 rpm, 1200 rpm, and 1500 rpm and varying loads of 
0 %, 10 %, 20 %, and 30 %. By combining the different states, speeds, 
and loads randomly, 48 distinct subdatasets were generated. All data 
were acquired using the same accelerometer sensor to measure the vi-
bration signals. 

4.2. Implementation details of the experiment 

Before constructing the graph data, we adopted the sliding window 
approach to segment the data samples, ensuring standardised sample 
lengths. Additionally, we applied Z-score normalisation to each data 
point, as shown in the following equation: 

x′ =
x − μ

σ (13)  

where x represents the original data point, μ signifies the mean of the 
dataset, σ denotes the standard deviation of the dataset, and x′ stands for 
the normalized data point. Standardising the data to follow a distribu-
tion with a mean of 0 and a standard deviation of 1 improves the model 
performance and enhances the stability of data processing. This nor-
malisation process aids in eliminating scale differences among variables, 
resulting in a more balanced and reliable input for subsequent analyses. 

Furthermore, to enhance the learning effectiveness of the GNN 
model while considering end-to-end processing and minimising the 
dependency on expert knowledge, the time-domain signal data under-
went an FFT transformation. This additional step obviates the need for 
further signal processing operations. Subsequently, the data from the 
four different states can be selected by focusing solely on the samples 
corresponding to a rotational speed of 600 rpm and a load of 0 %. By 
employing the previously outlined approach, we constructed an undi-
rected graph dataset, resulting in an input graph for the GAE. This graph 
encompasses 1800 nodes, including 180 Complete Subgraphs, as pre-
viously described. Subsequently, the input is fed into the trained GAE 
model for encoding, yielding the extracted features. This approach 
synergistically leverages the power of graph neural networks, end-to- 
end processing, and the advantageous properties of FFT to facilitate 
meaningful feature extraction while maintaining a minimised reliance 
on domain expertise. 

During the specific experimental procedures, in conjunction with the 
PyTorch Geometric (PyG) library, we tailored the parameters of the GAE 
model to the particulars of our experimental setting, as presented in 
Table 2. Notably, α corresponds to the weight value within the afore-
mentioned loss function. 

The experimental parameter settings during the training of the 
extractor are outlined in Table 3. 

Then, during supervised training using the newly extracted features 
with limited samples, specifically, 6 % of the new dataset was utilised as 

Table 1 
Overview of harmonic reducer dataset.  

State Sample 
frequency/kHz 

Rotational speed/ 
rpm 

Load/% 

Normal  25.6 600, 1200, 1500 0, 10, 20, 
30 

Flex spline pitting  25.6 600, 1200, 1500 0, 10, 20, 
30 

Wave generator stuttering  25.6 600, 1200, 1500 0, 10, 20, 
30 

Output shaft bearing 
misalignment  

25.6 600, 1200, 1500 0, 10, 20, 
30  

Table 2 
The parameters configuration of GAE.  

First GCN layer Second GCN layer BatchNorm α β 

GCNConv(1024, 256) GCNConv(256,128) 256  0.03 0  

Table 3 
The experimental parameter settings.  

Epoch Learning rate Optimizer 

15  0.001 Adam  
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the training set to train the classifiers in a supervised manner, simulating 
scenarios with limited labelled samples in industrial applications. The 
remaining 94 % of the new samples served as the test set. To thoroughly 
assess the quality of the new sample data, a selection of fundamental and 
commonly used machine learning classification models based on scikit- 
learn was employed. The training and testing processes were carried out 
separately for the new and old samples with the aim of comparing 
diagnostic outcomes. For the model training phase, parameter selection 
for the classifiers is performed arbitrarily, without deliberate tuning, to 
minimise the influence of the classifiers. To avoid randomness, five 

prevalent classification models were chosen for this purpose: Support 
Vector Classifier (SVC), Random Forest Classifier (RFC), XGBoost Clas-
sifier (XGB), K-Nearest Neighbors Classifier (KNN), and Multi-Layer 
Perceptron (MLP). 

The specific configurations of each classifier are listed in Table 4. 
The feature extraction process described above operates under the 

condition of unsupervised learning, as neither the construction nor the 
learning of the graph data requires knowledge of the sample labels. This 
characteristic makes it suitable for scenarios in industrial contexts where 
labelled data are scarce. Moreover, the methodology in this study aligns 
well with real-world practices. In practical scenarios, data can be 
collected and diagnostic processes can be repeated multiple times for the 
same equipment or component to enhance the reliability and stability of 
fault diagnosis results while mitigating the risks associated with erro-
neous diagnoses. To some extent, when combined with GAE, the pro-
posed graph construction method can be considered as a form of data 
filtering that effectively removes less relevant noise information. During 
utilisation, the diagnostic results obtained from multiple segments of the 
original sample, as partitioned by the method, can be integrated. The 
most frequent diagnostic outcome among these segments was selected as 
the final fault diagnosis of the original sample. 

4.3. Classification and comparison results 

During testing, to evaluate the outstanding performance of the pro-
posed SCG-GFFE method, experiments were conducted following the 
method and procedure described earlier. Targeting a few-shot super-
vised learning scenario, the same dataset was utilized with controls 
placed on the utilization of the SCG-GFFE model, as depicted in Table 5 
for comparison purposes. The experimental results demonstrate a sig-
nificant improvement in the accuracy of fault diagnosis with the utili-
zation of SCG-GFFE, thereby affirming its efficacy. Additionally, to 
ensure the reliability and consistency of the results, repeated experi-
ments were conducted for each experimental setup, with the mean and 
variance calculated to portray result stability and mitigate experimental 
stochasticity. In terms of fault classifiers, experiments were carried out 
using five basic classifiers individually, thereby avoiding potential 
anomalies introduced by unique classifiers, emphasizing the effective-
ness of the feature extractor, and validating the generality and reliability 
of SCG-GFFE through comparative experiments. 

In addition, to comprehensively evaluate the performance of the 

Table 4 
Configuration of each classifier.  

SVC decision_function_shape 

’ovr’ 

RFC n_estimators max_depth max_features random_state / 
100 None ’sqrt’ 42 / 

XGB n_estimators learning_rate max_depth objective random_state 
100 0.1 3 ’ multi:softprob ’ 42 

KNN n_neighbors 
5 

MLP hidden_layer_sizes activation solver max_iter random_state 
(50,) ’relu’ ’adam’ 500 123  

Table 5 
Comparison of testing results for a single operating condition before and after 
SCG-GFFE feature extraction.  

Classifier Accuracy with 
unextracted features 

Accuracy with 
extracted features 

Average 
enhancement 

SVC 0.9369 ± 0.0136 0.9994 ± 0.0018  0.0625 
RFC 0.9625 ± 0.0112 0.9994 ± 0.0018  0.0369 
XGB 0.8536 ± 0.0382 0.9864 ± 0.0065  0.1328 
KNN 0.8510 ± 0.0117 0.9989 ± 0.0022  0.1479 
MLP 0.9919 ± 0.0032 1.0000 ± 0.0000  0.0081  

Table 6 
Multi-metric evaluation of few-labeled sample classification results after SCG- 
GFFE’s feature extraction.  

Classifier macro-P macro-R accuracy macro-F1 AUC 

SVC 0.9991 ±
0.0019 

0.9991 ±
0.0019 

0.9991 ±
0.0019 

0.9991 ±
0.0019 

1.0000 ±
0.0000 

RFC 0.9994 ±
0.0017 

0.9994 ±
0.0018 

0.9994 ±
0.0018 

0.9994 ±
0.0018 

1.0000 ±
0.0000 

XGB 0.9817 ±
0.0086 

0.9806 ±
0.0096 

0.9806 ±
0.0096 

0.9807 ±
0.0096 

0.9997 ±
0.0003 

KNN 0.9979 ±
0.0026 

0.9978 ±
0.0027 

0.9978 ±
0.0027 

0.9978 ±
0.0027 

1.0000 ±
0.0000 

MLP 1.0000 ±
0.0000 

1.0000 ±
0.0000 

1.0000 ±
0.0000 

1.0000 ±
0.0000 

1.0000 ±
0.0000  

Table 7 
Multi-metric evaluation of few-labeled sample classification results without 
SCG-GFFE’s feature extraction.  

Classifier macro-P macro-R accuracy macro-F1 AUC 

SVC 0.9267 ±
0.0153 

0.9228 ±
0.0191 

0.9228 ±
0.0191 

0.9227 ±
0.0194 

0.9926 ±
0.0022 

RFC 0.9605 ±
0.0127 

0.9595 ±
0.0143 

0.9595 ±
0.0143 

0.9595 ±
0.0143 

0.9945 ±
0.0030 

XGB 0.8692 ±
0.0185 

0.8667 ±
0.0190 

0.8667 ±
0.0190 

0.8665 ±
0.0191 

0.9759 ±
0.0074 

KNN 0.8508 ±
0.0123 

0.8359 ±
0.0139 

0.8359 ±
0.0139 

0.8358 ±
0.0142 

0.9623 ±
0.0047 

MLP 0.9889 ±
0.0044 

0.9888 ±
0.0045 

0.9888 ±
0.0045 

0.9887 ±
0.0046 

0.9917 ±
0.0025  

Table 8 
Average enhancements in multimetric evaluation of fault diagnosis results with 
and without SCG-GFFE feature extraction.  

Classifier macro-P macro-R accuracy macro-F1 AUC 

SVC  0.0724  0.0763  0.0763  0.0764  0.0074 
RFC  0.0389  0.0399  0.0399  0.0399  0.0055 
XGB  0.1125  0.1139  0.1139  0.1142  0.0238 
KNN  0.1471  0.1619  0.1619  0.1620  0.0377 
MLP  0.0111  0.0112  0.0112  0.0113  0.0083  
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Fig. 7. ROC curves for various classifiers in fault diagnosis with SCG-GFFE.  

Fig. 8. ROC curves for various classifiers in fault diagnosis without SCG-GFFE.  
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Fig. 9. P-R curves for various classifiers in fault diagnosis with SCG-GFFE.  

Fig. 10. P-R curves for various classifiers in fault diagnosis without SCG-GFFE.  
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model, precision, recall, and F1-Score were chosen as auxiliary metrics. 
Because these three metrics were originally designed for binary classi-
fication tasks, they were adapted here for the four-class classification 
task by treating them as four binary classifications. The metrics were 
averaged across each class to obtain macro-P, macro-R, and the corre-
sponding macro-F1, as defined by the following formulas: 

macro − P =
1
n

∑n

i=1
Pi =

1
n

∑n

i=1

(
TP

TP + FP

)

i
(14)  

macro − R =
1
n

∑n

i=1
Ri =

1
n

∑n

i=1

(
TP

TP + FN

)

i
(15)  

macro − F1 =
2 × macro − P × macro − R

macro − P + macro − R
(16)  

where n represents the number of classes in the classification task or the 
number of binary classification tasks when split, and TP, FP, and FN 
represent the numbers of true positives, false positives, and false nega-
tives, respectively, in the binary classification tasks. 

Since different indicators can capture different performance char-
acteristics, considering the possible limitations of single “accuracy” as 
an evaluation indicator, the comprehensive evaluation of multiple in-
dicators can make the evaluation of experimental results more 
comprehensive and reliable. The experimental results are shown in 
Tables 6-8. Table 6 is the result of using SCG-GFFE, Table 7 is the result 
of not using SCG-GFFE, and Table 8 statistics the improvement obtained 
by using SCG-GFFE. Obviously, from the results of various indicators, 
the use of SCG-GFFE makes the fault diagnosis effect better, which also 
verifies the effectiveness of SCG-GFFE from multiple perspectives. 

To provide a more intuitive observation of the effect of using SCG- 
GFFE for feature extraction before and after the on-fault diagnosis of 
the few-labelled samples, we randomly selected one experimental result. 
For each fault category, we calculated the diagnostic performance 
separately. We plotted the precision-recall (P-R) curves and Receiver 
Operating Characteristic (ROC) curves for each classification model 
(Figs. 7-10 below). As can be clearly observed, when employing SCG- 
GFFE for fault diagnosis in harmonic reducers, followed by the use of 
basic classifiers, the results are excellent and significantly superior to 
those obtained without SCG-GFFE. 

The previous experiments were conducted based on a specific 
operating condition for comparative validation, considering relatively 
simple scenarios. However, in practical applications, various operating 
conditions may be encountered. Therefore, comparative experiments 
were conducted under 12 different operating conditions, as shown in 
Table 9, with a focus on distinguishing different fault states in a four- 
class classification task. The experimental results demonstrate the 
continued effectiveness of the proposed method in complex operating 
conditions. Thus, considering single or multiple operating conditions, 
the effectiveness and stability of the feature extractor remain consistent, 
yielding expected results. This further validates the stability of SCG- 
GFFE and its applicability in a wide range of scenarios. 

As mentioned in our earlier discussions, constructing graph data 
from vibration signals poses a significant challenge due to the absence of 
explicit structural information. For single-sensor measurements of vi-
bration signals, one of the most direct and commonly used methods for 
graph construction is based on K-nearest neighbors (KNN). Therefore, 
after validating the performance of the feature extractor, experiments 
were designed to assess the performance of the proposed self- 
constructed graph method and compare it primarily with the KNN- 
based graph construction method. Building upon the GFFE proposed 
in this paper, the graph construction method was replaced, and the ef-
fects of the self-constructed graph method and the KNN-based graph 
method were compared, as presented in Table 10. The experimental 
results demonstrate that the self-constructed graph method proposed in 
this paper exhibits superior performance compared to the KNN-based 

Table 9 
Comparison of testing results for 12 operating conditions before and after SCG- 
GFFE’s feature extraction.  

Classifier Accuracy with 
unextracted features 

Accuracy with 
extracted features 

Average 
enhancement 

SVC 0.9026 ± 0.0128 0.9708 ± 0.0140  0.0682 
RFC 0.8807 ± 0.0331 0.9754 ± 0.0111  0.0947 
XGB 0.7956 ± 0.0184 0.9638 ± 0.0104  0.1682 
KNN 0.8293 ± 0.0116 0.9888 ± 0.0098  0.1595 
MLP 0.9618 ± 0.0047 0.9973 ± 0.0043  0.0355  

Table 10 
Comparison of testing results based on SCG-GFFE and KNN-GFFE with different 
K.  

Classifier KNN-GFFE 
(K = 1) 

KNN-GFFE 
(K = 5) 

KNN-GFFE 
(K = 7) 

KNN-GFFE 
(K = 9) 

SCG-GFFE 
(Ours) 

SVC 0.9157 ±
0.1740 

0.9083 ±
0.0087 

0.9028 ±
0.0216 

0.8922 ±
0.0142 

1.0000 ±
0.0000 

RFC 0.8900 ±
0.0150 

0.8823 ±
0.0113 

0.8898 ±
0.0228 

0.8827 ±
0.0103 

0.9994 ±
0.0019 

XGB 0.8504 ±
0.0209 

0.8444 ±
0.0182 

0.8395 ±
0.0208 

0.8474 ±
0.0226 

0.9690 ±
0.0236 

KNN 0.8728 ±
0.0142 

0.8666 ±
0.0122 

0.8115 ±
0.0294 

0.8310 ±
0.0219 

0.9994 ±
0.0021 

MLP 0.9289 ±
0.0094 

0.9194 ±
0.0084 

0.9244 ±
0.0156 

0.9208 ±
0.0085 

1.0000 ±
0.0000  

Fig. 11. Diagnostic results for different values of K in the KNN-GFFE-based fault diagnosis.  
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graph construction method. 
Subsequently, for different values of K in KNN-GFFE, the corre-

sponding results for fault diagnosis on a few-label sample dataset are 
shown in Fig. 11. It is evident that the results of the fault diagnosis using 
KNN-GFFE exhibit some fluctuations with varying K values. The results 
are notably inferior to the performance achieved by SCG-GFFE. It further 

underscores the instability of the KNN-based method and its reliance on 
the choice of K value and the classification capability of the KNN algo-
rithm itself, thereby highlighting the superior performance of the self- 
constructing graph method. Furthermore, as an example, when using 
K = 1 in KNN-GFFE for feature extraction, the performance of fault 
classification based on the extracted features is illustrated in Figs. 12 and 

Fig. 12. ROC curves for various classifiers in fault diagnosis with KNN-GFFE (K = 1).  

Fig. 13. P-R curves for various classifiers in fault diagnosis with KNN-GFFE (K = 1).  
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13, clearly demonstrating a significant performance gap compared with 
SCG-GFFE. 

Finally, a comparison was also conducted with recent experimental 
results of a deep learning-based harmonic reducer model, WRCTD-CNN- 
LSTM [43], as shown in Table 11. The results indicate that the proposed 
approach outperforms the WRCTD-CNN-LSTM method significantly in 
the context of few-shot learning on this dataset. Considering the SCG- 
GFFE-MLP proposed in this paper, which achieves near-perfect accu-
racy of 100 % with only a simple multilayer perceptron and a mere 6 % 
of the data for training, its performance is remarkably impressive. 
Hence, it is inferred that even without further extensive comparisons 
with other models at the level of harmonic reducer fault diagnosis, the 
excellence of the proposed method is adequately demonstrated. 

In summary, experimental validations were conducted on various 
aspects such as model feature extraction effectiveness, stability, and 
reliability. Multiple metrics and experimental conditions were provided 
to comprehensively verify the excellent performance of the proposed 
SCG-GFFE from various perspectives. 

4.4. Visualization of extracted features and sensitivity analysis 

Furthermore, to provide a more intuitive view of the feature 
extraction results, the t-SNE algorithm is employed to reduce the 
dimensionality of both the original and new features. Subsequently, 
these reduced-dimensional features were visualised on a two- 
dimensional plane to highlight the clustering effects. A comparison of 
the clustering effects of the embeddings before and after extraction is 
shown in Fig. 14. 

Clearly, whether in a single operating condition or under the more 
complex scenario of twelve different conditions, it is evident from the 
visualizations that after applying the feature extraction method pro-
posed in this study, the features of different fault types are effectively 
separated. This separation is conducive to enhancing the effectiveness of 
fault diagnosis and serves as a visual confirmation of the successful 
extraction of fault features. 

Simultaneously, a sensitivity analysis was conducted for the two loss 
term coefficients α and β in the experimental settings. They were varied 
within the range of 0–0.1 with a step size of 0.01. Multiple experiments 
were performed, each with a fixed combination of α and β, and the 
average classification accuracy for the fault diagnosis was recorded. The 
sensitivity analysis results are shown in Fig. 15, where kl_coef and 
reg_coef represent the coefficients for the KL divergence loss term and the 
regularisation loss term, respectively, corresponding to the weighting 
factors α and β. It can be observed that the presence of both KL diver-
gence loss and regularisation loss contributes to the improvement in the 
final performance, and variations in the loss coefficients have an impact 
on the outcome. In practical applications, it is advisable to set the loss 
coefficients flexibly based on the specific choice of the final classifier. 
However, overall, even with the suboptimal parameter choices dis-
cussed in this paper, the final fault diagnosis performance remained 
sufficiently impressive. This further substantiates the outstanding 

Table 11 
Comparison of testing results using SCG-GFFE and WRCTD- 
CNN-LSTM.  

Classifier Accuracy 

SCG-GFFE-SVC 0.9994 ± 0.0018 
SCG-GFFE-RFC 0.9994 ± 0.0018 
SCG-GFFE-XGB 0.9864 ± 0.0065 
SCG-GFFE-KNN 0.9989 ± 0.0022 
SCG-GFFE-MLP 1.0000 ± 0.0000 
WRCTD-CNN-LSTM 0.8584 ± 0.0143  

Fig. 14. Visualisation of the clustering effects of embeddings before and after SCG-GFFE processing.  
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feature extraction capability of SCG-GFFE. Add sensitivity analysis re-
sults regarding the learning rate are presented in Fig. 16. 

The sensitivity analysis results, as shown in the figures, indicate that 
the value of β significantly affects the overall classification performance, 
with a preference for β = 0. Furthermore, the impact of α is also present 
but not as pronounced as that of β. The chosen parameter settings of α 
and β as 0.03 and 0, respectively, appear to be favourable. Moreover, 
when the learning rate became relatively large, the overall classification 
performance of the classifier tended to decrease. Thus, a learning rate of 
0.001 was deemed to be appropriate in this context. 

In specific experiments related to harmonic reducer fault diagnosis, 
we segmented a complete end-to-end fault diagnosis network into two 
parts: the fault feature extractor and the fault classifier. Different training 
and testing strategies were applied to each, and the testing performance of 
the fault classifier uniformly indicated the overall effectiveness of both 
fault diagnosis and fault feature extraction. Through feature visualization, 
along with various metrics such as fault classification accuracy, and 
conducting multiple sets of experiments using different fault classifiers, 
this method has been comprehensively validated from diverse 

perspectives, affirming its reliability, effectiveness, and stability. Simul-
taneously, the comparison of fault diagnosis outcomes with or without the 
utilisation of SCG-GFFE provides robust evidence for the effectiveness and 
outstanding performance of SCG-GFFE. It adeptly extracts fault feature 
information from signals, significantly enhancing the salience of the fault 
features in the extracted new samples. 

5. Conclusion 

This study addresses a pivotal issue in the fault diagnosis of harmonic 
reducers by focusing on the extraction of fault features. A fault feature 
extractor, named SCG-GFFE, was devised based on graph neural net-
works. Tailored for unlabelled vibration signals collected from a single 
sensor, this fault feature extractor facilitates the unsupervised extraction 
of fault features, enabling an effective fault diagnosis with limited labelled 
samples. There are three main contributions. First, this method offers a 
practical and effective approach to constructing graph data for non- 
multisource signals, resulting in a self-constructed graph. Through 
organic integration and segmentation of the samples, the self-constructed 
graph demonstrated a reduced likelihood of erroneous edge connections, 
showcasing heightened reliability and stability. Second, compared to 
traditional and prevalent graph construction methods based on signal 
processing and expert knowledge, our approach does not rely on the 
integration of expert knowledge. It is more direct, effective, and user- 
friendly. Third, experiments on harmonic reducer fault diagnosis 
conclusively demonstrate that this fault feature extractor can be seam-
lessly integrated with other classification algorithms, enabling precise 
fault diagnosis of harmonic reducers even with limited labelled samples. 

In summary, the method proposed in this study can construct 
appropriate graph-structured data from vibration signals collected by a 
single sensor, perform graph learning, and effectively extract fault fea-
tures from unlabelled samples. This enhances the quality of the samples 
and contributes to downstream tasks, including improving the fault 
diagnosis accuracy with limited labelled samples. The simplicity and 
efficiency of this method make it a valuable standalone step for 
enhancing the sample quality. It can be seamlessly integrated with other 

Fig. 15. Sensitivity analysis of loss term coefficients α and β.  

Fig. 16. Sensitivity analysis of learning rate.  
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fault diagnosis methods, showing robust stability, generality, and scal-
ability. Therefore, this method holds promising prospects for unsuper-
vised fault feature extraction from harmonic reducer vibration signals 
and for conducting the fault diagnosis of harmonic reducers. 
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