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Abstract—In actual industrial production, differences in 

production conditions lead to variations in the collected data 

distribution. This gives rise to a particular problem: while one set 

of conditions has complete status data available, another set only 

possesses data from the healthy state. Differences in data 

conditions result in limitations for diagnosing the new condition. 

To address this challenge, a method based on envelope order 

spectra for data generation is proposed. Initially, envelope and 

order analysis is conducted on raw vibration data to align envelope 

spectra across different domains and extract domain-independent 

signal components—the envelope order spectra. Subsequently, an 

enhanced Variational Autoencoder Generative Adversarial 

Network (VAEGAN) is trained using the envelope order spectra. 

The trained model is then employed to generate synthetic envelope 

order spectra, serving as data augmentation for another set of 

working conditions, thereby achieving cross-domain data 

augmentation. Next, the augmented envelope order spectra data is 

used to train a generic model for fault classification, enabling 

cross-domain fault diagnosis. Finally, the proposed approach is 

validated by testing it with real envelope order spectra data from 

a different working condition. Experimental results demonstrate 

that the proposed method can generate reliable fake data under 

diverse working conditions, accomplishing cross-domain data 

augmentation and fault diagnosis while preserving data privacy. 

 
Index Terms—envelope order spectrum, variational 

autoencoder generative adversarial networks, data imbalance, 

cross-domain data augmentation, fault diagnosis 

 

I. INTRODUCTION 

n the realm of modern manufacturing, real-time monitoring 

has become a ubiquitous practice for overseeing equipment 

within factories. This proactive approach empowers engineers 

to continually evaluate the health status of equipment based on 

monitored data, facilitating the timely identification and precise 

diagnosis of potential faults. Building on this foundation, 

engineers and factory managers can swiftly collaborate to 

address faults, implement intelligent scheduling schemes, and 
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effectively manage and rectify issues. This comprehensive 

strategy aims to proactively mitigate safety and economic risks 

associated with equipment failures. Notably, among the crucial 

components of rotating machinery products, rolling bearings 

assume a pivotal role. Operating under demanding conditions, 

including high-speed operations and heavy loads, these 

bearings often endure prolonged periods of continuous 

operation in actual production processes. Consequently, they 

represent a primary focus for health monitoring initiatives. If 

the bearing fails, it can affect the overall performance of the 

mechanical equipment, causing downtime, expensive 

maintenance, and hidden costs to the enterprise. In severe cases, 

it can even lead to serious safety accidents. 

Recently, many scholars have committed themselves to 

developing effective and accurate fault diagnosis methods for 

rolling bearings, aiming to ensure their seamless operation and 

enhance the safety and economic benefits of mechanical 

products. These methods can be categorized into traditional 

signal processing-based diagnostic approaches and data-driven 

intelligent diagnostic methods, catering to the requirements of 

subjective analysis and reasoning. Traditional fault diagnosis 

methods, which are based on signal processing, aim to detect 

and diagnose faults in complex, dynamic signals (e.g., 

vibrations) with low signal-to-noise ratios. These methods use 

techniques such as denoising, filtering, time-frequency 

analysis, and signal decomposition to extract fault features [1]. 

They have been applied in the health management of critical 

equipment such as offshore wind turbines [2], intelligent 

manufacturing systems [3], and key components like bearings 

and gears. Specifically, signal processing techniques such as 

wavelet transform [4], wavelet packet transform [5], Hilbert-

Huang Transform (HHT) [6], and empirical mode 

decomposition (EMD) [7] are classic and commonly used 

technical tools in this context. In recent years, they have seen 

wide application and rapid development in the signal analysis 

of mechanical fault diagnosis. However, this process is 

complex and less intelligent than current data-driven methods. 
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With the advent of the era of big industrial data, intelligent 

diagnostic methods have attracted significant attention due to 

their robustness and ability to make complex calculations， such 

as Convolutional Neural Networks (CNN) [8], Autoencoder 

(AE) [9], and Deep Belief Networks (DBN) [10], among others. 

Liu [11] proposed a fault detection method utilizing acoustic 

emission (AE) signals, combining Wavelet Region Correlation 

Threshold Denoising (WRCTD) and a fusion of Operational 

Modal Analysis (OMA) and Variational Mode Decomposition 

(VMD) for enhanced efficacy. Peng [12] proposed a Residual 

Neural Network (BYOL) for intelligent fault diagnosis with 

Bearing-Free-label Contrastive Learning. Xu [13] proposed a 

cross-modal fusion convolutional neural network (CMFCNN) 

for mechanical fault diagnosis to address the issue of data 

distribution gap from multisource mechanical signals. Wang 

[14] introduced a fully interpretable neural network that utilizes 

statistical quantities to replace extreme learning machines 

(ELMs) for machine state detection. Sun [15] proposed a CNN 

collaborative fault diagnosis method under the framework of 

swarm learning to address the issue of insufficient data. 

Meanwhile, Sun [16] also proposed a method that utilizes 

wavelets and filters as a substitute for CNN, aiming to capture 

distinctions among various local models. Hou [17] proposed a 

data-driven optimized square envelope spectrum, termed 

OSESgram, for selecting the optimal informative frequency 

bands (IFB) in vibration-based bearing fault diagnosis. 

Additionally, Zhou [18] established a new semi-supervised 

method for dealing with limited training data based on deep 

convolutional generative adversarial networks (DCGAN). Xiao 

[19] proposed a joint transfer network for unsupervised bearing 

fault diagnosis, transferring from simulation domain to 

experimental domain. Zuo [20] introduced a probabilistic spike 

response model (PSRM) with a multi-layer structure to improve 

the performance of SNN in bearing fault diagnosis. Su [21] 

proposed a data reconstruction hierarchical recursive meta-

learning (DRHRML) method for bearing fault diagnosis under 

different working conditions. Finally, Yan [22] proposed a 

novel weight-oriented optimization model for simultaneous 

interpretable initial fault detection and fault diagnosis. In 

essence, artificial intelligence (AI) has propelled the 

advancement of real-time data-driven intelligent fault diagnosis, 

showcased remarkable potential and attracted increased 

attention. Nevertheless, these sophisticated fault diagnosis 

methods often require substantial datasets, and practical 

industrial applications frequently face challenges related to 

inconsistent data distribution, commonly known as domain 

shift. This issue substantially impairs the performance of data-

driven models. 

Within the domain of data-driven fault diagnosis, the ceiling 

is often determined by the quality and quantity of data, a 

common challenge encountered in practical production. In real-

world applications, available training data is rarely perfect and 

frequently lacks either in quantity or quality. For instance, 

within the fault history dataset of a particular factory, there is 

an abundance of data samples for common and frequently 

occurring fault types, but a shortage of samples for rare faults. 

In the event of a rare fault occurring in a critical component, a 

model trained on such a dataset may struggle to provide timely 

and reliable diagnoses, potentially leading to severe 

consequences. Moreover, the vibration data distribution of the 

same bearing can vary under different operating conditions. If 

the training data does not fully align with the operational 

scenarios, the model's generalization capability may be 

compromised. As a result, it is essential to explore the 

insufficient availability of labeled training data and the 

challenges of training across various working conditions.  

Data generative models [23] are a viable approach to dealing 

with data insufficiency. These models generate similar sample 

data by learning the characteristics of the original existing 

sample data, forming enough data to work with. Generative 

Adversarial Network (GAN) [24] is a representative data 

generation model, which solves the problem of insufficient 

samples by expanding sample data. It has been widely used in 

the field of image analysis and is now also applied in bearing 

fault diagnosis. Therefore, in the scenario of insufficient 

training data, leveraging existing data to train a generative 

model and subsequently utilizing the newly generated data for 

data augmentation emerges as a viable solution. Nevertheless, 

in actual production scenarios, varied working conditions might 

yield adequate fault data collection in one scenario, posing 

challenges or encountering sample shortages in another. This 

situation may result in the generative model, trained on existing 

data, producing generated data that doesn't completely align 

with the authentic distribution, particularly lacking in generated 

data for specific conditions. Many fault diagnosis studies 

overlook practical application scenarios, prioritizing idealized 

laboratory simulations. Thus, we aim to minimize the impact of 

cross-condition variations during the data generation phase by 

considering real-world production scenarios. 

In response to the scarcity of labeled fault data for certain 

bearings in practical production and the challenges posed by 

domain differences between training and testing data leading to 

poor generalization, this paper proposes an effective method for 

generating fault data. Specifically, Hilbert transformation and 

Fast Fourier transformation (FFT) are applied to the time-

domain signals from sensors. Subsequently, an order analysis is 

conducted on the resulting envelope spectrum to extract signal 

components unrelated to the domain, obtaining an envelope 

order spectrum (EOS). Next, an EOS based Variational 

Autoencoder Generative Adversarial Network (EOS-

VAEGAN) is designed to form a generative model. Leveraging 

the envelope order spectrum data, this model generates fault 

data adaptable to different working conditions. The main 

contributions of this paper are as follows: 

(1) This paper employs an enhanced VAEGAN to generate 

data samples for data augmentation, effectively addressing the 

problem of insufficient labeled data under specific working 

conditions prior to model training. 

(2) The proposed method extracts the envelope order 

spectrum of the fault signal, isolating fault characteristics with 

weak associations to working conditions as the training set for 

the generative model. This approach effectively addresses the 

domain shift issue between training and testing data, enabling 

the generated data to efficiently meet the requirements for 

training diagnostic models under various working conditions. 

(3) The generated pseudo data not only compensates for the 

shortage of training data but also ensures data privacy 

protection. Moreover, by combining the generated synthetic 

fault data with the original normal data, the model remains 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3390242

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 30,2024 at 06:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 
 

capable of training an effective fault diagnostic model. 

The remainder of this paper is organized as follows. Section 

II provides a brief overview of envelope extraction, order 

analysis, and the related research on VAEGAN. Section III 

describes the detailed process of the proposed method, 

including the structure of the diagnostic model and the data 

preprocessing steps for converting the data into an envelope 

order spectrum. Section IV presents the experimental results of 

using the proposed method on bearing fault signals and 

comparative experiments. Section V concludes the paper. 

II. RELATED FUNDAMENTAL WORK  

A. Envelope extraction 

The envelope spectrum is a frequency-domain signal analysis 

method that adeptly demodulates and extracts bearing impact 

signals embedded in high-frequency natural vibrations. 

Consequently, it enables the effective detection of fault features 

in the frequency domain. 

The process of envelope extraction involves several steps. 

First, the Hilbert transform is applied to the input signal, 

generating an analytical signal. Then, the modulus of the 

analytical signal is calculated, yielding the envelope signal. 

This envelope signal can be further analyzed by performing 

FFT, which yields the Hilbert envelope spectrum. The resulting 

spectrum shows the amplitude of the envelope signal as a 

function of frequency. The envelope spectrum is a powerful 

tool for detecting vibration and shock in a signal. 

If the input signal is denoted by ( )x t , then its Hilbert 

transform ( )x̂ t  can be computed as follows: 

 ( )
( )

( )
+ τ1 1

ˆ τ
π τ π

x t
x t d x t



−

−
= =  . (1) 

In Eq.(1), the output of the signal after passing through a 

series of orthogonal filters is represented. To further process 

this signal, an analytic signal can be constructed, which is a 

complex signal derived from the original real signal. The 

purpose of constructing the analytic signal is to obtain a 

representation of the signal in the complex domain. To achieve 

this, the analytic signal can be expressed as a combination of 

the original signal and its Hilbert transform, which is obtained 

by shifting the phase of the Fourier transform of the signal by -

π/2. Mathematically, the analytic signal can be expressed as: 

 ( ) ( ) ( ) ( ) ( )ˆ ,
j t

x t x t jx t A t e


= + =  (2) 

where ( )x t  is the real part of the signal, ( )x̂ t  is its imaginary 

part, and j is the imaginary unit. A(t) of the signal is the Hilbert 

envelope of ( )x t  . The envelope spectrum is obtained by doing 

Fourier transform on this A(t). 

Diverging from conventional spectra, the amplitude of the 

fault characteristic frequency stands out conspicuously in the 

envelope spectrogram, facilitating more straightforward 

identification. Consequently, envelope spectrum analysis 

proves to be more apt for extracting fault characteristics when 

compared to traditional spectrum analysis. 

B. Order analysis 

Order analysis [25] is a crucial method for dealing with 

rotational speed and order. The order, which is primarily 

relevant to rotating machinery, represents the number of times 

a rotating part completes a full rotation in a specific time frame. 

The order is a multiple of the rotational speed or rotational 

frequency and remains constant for the rotational speed. The 

actual speed, which is independent of the axis, is a multiple or 

fraction of the speed of the reference axis. Generally, the 

vibration and noise response of the structure appears at 

multiples or fractions of the rotational speed, known as orders. 

In real industrial production equipment, the rotational speed 

of the machinery fluctuates to some extent rather than 

remaining constant. This fluctuation causes a change in the 

rotation frequency, and consequently, the fault characteristic 

frequency of the bearing also changes. At this point, 

conventional Fourier spectrum analysis in steady state 

conditions is ineffective. To overcome the limitations of 

conventional FFT and other methods in fault diagnosis of 

variable speed rotating machinery, scholars have developed the 

order analysis method, also referred to as the order tracking 

method. 

The key to order tracking technology is to sample the 

constant angle of the reference axis and perform Fourier 

transform on the angle domain stationary waveform to obtain 

the frequency spectrum. This spectrum reflects the amplitude 

and frequency distribution of different orders of vibration in the 

bearing. Since rolling bearings operate at different speeds and 

loads under different working conditions, the spectrum under 

various working conditions cannot correspond. However, the 

corresponding relationship between order spectra is relatively 

accurate. By resampling the sampling signals at equal time 

intervals, the software transforms them into equiangular spaced 

sampling signals, enabling one-to-one correspondence of 

spectral lines under different working conditions. 

The relationship between order, frequency, and speed can be 

expressed as: 

 60 / ,O f n=  (3) 

where O is the order of the measured object, which is a unitless 

quantity; f is the frequency of the measured object in Hz (hertz); 

n is the speed of the motor in RPM (revolutions per minute). 

C. Generative model  

As a pivotal category within AI models, generative models 

receive training samples adhering to the distribution
rawp . They 

acquire the ability to emulate this data distribution and generate 

a probabilistic model, denoted as
modelp , allowing for the 

production of data samples resembling the training set for 

subsequent utilization. Notably, GANs and VAEs stand out as 

the two primary generative models in this context. 

GAN [26] is comprised of a pair of neural networks, a 

discriminator (D) and a generator (G), which are based on 

statistics and game theory to generate data samples. The 

primary goal of GAN is to input random noise (z) into G to 

generate data, with the data generated by G being referred to as 

pseudo samples. Subsequently, the fake and real samples are 

inputted to D simultaneously to distinguish between them. The 

purpose of D is to identify fake samples from real samples 

accurately, while G aims to generate data similar to the original 

data. Therefore, D and G compete against each other to achieve 

their goals. The ultimate objective of the GAN model is to make 

the accuracy rate of G distinguish between fake and real 
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samples 0.5, which ensures that the fake samples appear 

genuine.  

GAN aims to let the generator generate enough samples to 

fool the discriminator. From a statistical point of view, 

assuming that the generated pseudo samples and real samples 

have the same data distribution; that is, the generated samples 

and real samples have the same probability density function, 

that is, ( ) ( )G datap x p x= . The purpose of training GAN is 

also to meet this requirement. The loss function of GAN comes 

from the cross-entropy loss function of the two classifications： 

 ( ) ( )
1

= - log 1 log 1i i i i

i

L y p y p
N

 + − −   , (4) 

The loss function of the discriminator is divided into two 

parts, one part is to discriminate the real sample as 1, and the 

other part is to discriminate the fake sample as 0, so the 

optimization goal of the discriminator is to maximize the sum 

of these two items, using V(G, D), the optimization objective is: 

 ( ) ( ) ( )( ) ( ) ( )( ), log log 1
data zx p x z p z

V G D D x D x=  +  − , (5) 

 ( )argmax ,G DD V G D = . (6) 

The purpose of the generator is to compete with the 

discriminator and aims at making Eq.(5) as small as possible. 

The generator G
 can be expressed as: 

 ( )argmin ,G GG V G D = . (7) 

Regarding VAE, it innovates upon the foundation of 

autoencoders by incorporating variational inference theory. 

This involves constraining the distribution q  of learned latent 

variables z  to approximate a predefined prior distribution p , 

typically a standard normal distribution. Thus, beyond the 

conventional reconstruction loss ( , )L x x , VAE introduces the 

Kullback-Leibler (KL) divergence loss to ensure a more 

uniform distribution of latent variables in the latent space: 

 ( , ) ( ( | ) || ( ))j

j

L L x x KL q z x p z= +  . (8) 

VAE achieves enhanced robustness of the decoder to noise 

by introducing Gaussian noise to the results of the encoder. 

Simultaneously, it employs KL loss for regularization of the 

encoder, aiming to drive the mean of the encoded distribution 

towards zero. Additionally, the encoder outputs variance to 

modulate the intensity of the noise, imparting a certain level of 

randomness and variability to the decoder's output. This 

approach facilitates the learning of more generalized results. 

Hence, through adversarial learning, GANs iteratively 

strengthen sample generation, achieving higher-quality outputs. 

Nevertheless, their training may be vulnerable to challenges 

like mode collapse and instability. In contrast, VAEs, by 

constraining latent variables within a prior distribution, imbue 

the latent space with enhanced continuity, thereby facilitating 

interpolation within latent representations. 

Fig. 1 shows the VAEGAN model which integrates VAE 

onto the foundation of GAN to enhance training stability. The 

two models share a common decoder, amalgamating the 

continuity from VAE and the generative capabilities of GAN in 

the latent space. This integration allows for semantic-

meaningful interpolation within the latent space. Achieving a 

fine equilibrium between VAE and GAN, the model excels in 

producing samples that exhibit superior qualities in terms of 

quality, diversity, and control over the latent space. 
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Fig. 1. Structure of VAEGAN. 

III. THE PROCEDURE OF THE PROPOSED METHOD 

This section illustrates the proposed envelope-order-

spectrum-based method for VAEGAN data generation (EOS-

VAEGAN). 

A. Overall process 

This section provides an overview of the proposed method, 

which involves utilizing the envelope order spectrum (EOS) 

signals as the input of VAEGAN to generate samples. Assume 

that there are multiple sets of data in different working 

conditions. One set of data has all faulty data, but the other set 

of data has only normal data. The data from the first working 

condition undergoes analysis and processing to obtain the 

envelope order spectrum. This EOS is then used as the input for 

the VAEGAN network, which generates the pseudo-envelope 

order spectrum. Use the generated pseudo-envelope order 

spectrum and the envelope order spectrum of the normal data 

under the second working condition to train a network, and 

finally use the data of the second working condition to input the 

final network to test the feasibility of the network. The flow 

chart of the whole algorithm is shown in Fig. 2. 

Data acquisition

SensorsNI collection device Rotating machinery

Data preprocessing (different condition)

Discriminator Generator/Decoder

EncoderGenerator Fake Data ClassificationFeature Extraction

 

 
Fig. 2. Flow chart of the proposed algorithm. 

B. Envelope order spectrum 

For the original data, initial preprocessing is conducted. 

Subsequently, Hilbert transformation based on Eq. (1) and Eq. 

(2) is applied, followed by FFT transformation, to obtain the 

signal's envelope spectrum. Subsequently, the frequency of the 

envelope spectrum signal is linearly interpolated and divided by 

the rotational speed (see Eq. (3)) to obtain the order, resulting 

in the envelope order spectrum, which will serve as the real 

input for subsequent model generation. In this process, the 

envelope spectrum processing transforms the signal from the 

time domain to the frequency domain, effectively demodulating 

the signal and extracting the fault characteristics, making the 
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fault information more significant and less likely to be lost. 

Furthermore, when conducting order analysis on the envelope 

spectrum signal, due to the minimal impact of load variation on 

the signal, we focus primarily on the differences in speed 

between signals from different working conditions. Under 

varying speeds, the fault characteristic frequency of the 

collected signals is positively correlated with the speed. We 

perform order analysis based on Equation 3, which essentially 

conducts analysis processing in the angular domain, to reduce 

the differences caused by speed variations, aligning the 

envelope spectra from different speeds. Therefore, after 

extracting the envelope order spectrum from signals under 

different working conditions, not only have we achieved some 

degree of fault feature extraction, but we have also reduced the 

differences caused by speed changes, to some extent extracting 

domain-independent fault feature components. 

C. Enhanced VAEGAN 

The enhanced VAEGAN model structure, as illustrated in 

Fig. 3, is composed of three components: an encoder, a decoder 

(which also serves as a generator), and a discriminator. During 

the forward propagation process, the envelop order spectrum 

data X  of the original input is processed by the encoder to 

obtain   and  . Subsequently, the encoding result Z is 

computed based on Eq.(9): 

 2 'Z e


 = + , (9) 

Following this, a portion of random noise data   is sampled 

from a standard normal distribution. This noise data, along with 

Z , is separately fed into the decoder, resulting in the generated 

envelop order spectrum X  and the reconstructed envelop order 

spectrum X . Furthermore, X , X , and X  are individually 

input into the discriminator, yielding discrimination results ( Y

, Y , Y ) and feature extraction results ( fX , fX , 
fX ). 
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Fig. 3. Structure of Enhanced VAEGAN model. 

While training the model, an adversarial approach is still 

indispensable. Consequently, for each epoch, it is imperative to 

initially fix the parameters of both the encoder and decoder and 

then proceed to update the parameters of the discriminator. 

During the training of the discriminator, the loss function is 

defined as illustrated in Eq.(10):  

 ( , ) ( , ) ( , )dis CE CE CEL L Y L Y L Y= + +1 0 0 , (10) 

where CEL denotes the cross-entropy loss, 0  and 1  represent 

the all-zero and all-one vectors, respectively. 

 Following the parameter update of the discriminator, its 

parameters are fixed for the subsequent training of the encoder 

and decoder, i.e., the VAE portion. The training loss function 

for this section is depicted in Eq.(15), comprising three main 

components. Eq.(11) represents the generative adversarial loss, 

employing the discriminator to adversarial train the generation 

of data to closely resemble ground truth. Eq.(12) signifies the 

generative matching loss, ensuring alignment between 

generated data and ground truth data through the discriminator's 

outcomes. Eq.(14) corresponds to the KL divergence loss, 

aiming to bring the distribution of encoded data as close as 

possible to a normal distribution. 

 

 ( , )GD CEL L Y= 1 , (11) 

 ( ( , ) ( , ))fGrec fL MSE X X MSE X X
N


= + , (12) 

 

2

1 1

1
( , ) ( )

m n

ij ij

i j

MSE X Y X Y
m n = =

= −


 , (13) 

 
2

1

1
(1 )

2
i

N

KL i i

i

L e
=

= − + − −
σ

σ μ  (14) 

 
1 2 3VAE KL GD GrecL L L L  = + +  (15) 

TABLE I 

CNN Parameters Setup 

Layer Tied parameter 
Activation 

function 

Output 

size 

Input / / 16×150×1 

Convolutional 
layer 1 

Kernel size: 16， 

Filters：32 

Stride:2 

ReLU 16×68×32 

Pooling layer 1 
Pool_size: 2  

Stride:2 
/ 16×34×32 

Convolutional 
layer 2 

Kernel size: 8， 

Filters：64 

Stride:1 

ReLU 16×27×64 

Pooling layer 2 
Pool_size: 2 Stride: 

2 
/ 16×13×64 

Convolutional 

layer 3 

Kernel size: 4， 

Filters：128 

Stride:1 

ReLU 16×5×128 

Pooling layer 3 
Pool_size: 3 Stride: 

3 
/ 16×1×128 

Flatten / / 16×128 

Dense 1 Units：180 ReLU 16×180 

Dense 2 Units：4 Softmax 16×4 

In this context, an additional feature extraction component 

has been incorporated into the design of the last layer of the 

discriminator, aiming to perform more than just data 

classification. The purpose of this operation is to compute the 

squared difference between the generated envelope order 

spectrum data in the discriminator's feature space and the real 

envelope order spectrum data. Consequently, the generator's 

matching loss encompasses both the matching loss based on the 

discriminator's classification results and the discriminator's 

feature matching loss. By minimizing this loss, our objective is 

for the feature distribution of the generated data in the 

discriminator's feature space to closely resemble the feature 

distribution of real data. This contributes to the generator 

producing more authentic envelope order spectrum data. 

Ultimately, the loss function for the VAE component is the 

weighted sum of three individual losses. In the aforementioned 

Eq.(10)-(15), parameters 
1 , 

2 and 
3 , serve as 

hyperparameters, allowing for flexible adjustment of the 
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weights assigned to different loss components. 

D. CNNs parameters setup 

After obtaining the generated data, the dataset with missing 

values is enhanced. To assess the effectiveness of the 

augmented dataset, a basic CNN model can be employed as a 

classification model. The model is trained using the generated 

data, while the original authentic data serves as the test set to 

evaluate the quality of generating data across different 

operating conditions. The network structure parameters of the 

CNN model are presented in TABLE I. 

E. Algorithmic pseudocode 

A pseudo-code for the proposed cross-domain fault diagnosis 

algorithm has been developed. First, the data from each 

operating condition is collected. Subsequently, in the scenario 

where fault data is abundant for one operating condition (source 

domain) and scarce for another (target domain), cross-domain 

data augmentation and fault diagnosis are conducted. 

Specifically, the data from the source domain is preprocessed 

to obtain the envelope order spectrum of the fault signals for 

that operating condition. Following this, an enhanced 

VAEGAN model is trained using these envelope order 

spectrum data as a training set. The trained model is then 

utilized to generate synthetic data for the source domain. 

Subsequently, the generated synthetic data, along with the 

limited real data from the target domain, is combined to form a 

training set for a fault classification model of the target domain.  

During our experimental implementation, for the purpose of 

effectively validating the outcomes of cross-domain data 

augmentation and fault diagnosis. Deliberately, abundant data 

in both the source and target domains were opted for. However, 

it is essential to note that the fault data from the target domain 

is exclusively reserved for use as a test set. This strategic choice 

is made to assess the effectiveness of cross-domain fault 

diagnosis. Consequently, the target domain is still considered to 

lack sufficient training data for fault scenarios.  

Algorithmic 1 

Cross-domain fault diagnosis algorithm 

I. Obtain data for each working condition 
II. Data preprocessing 

   Perform the envelope order for the data (N1, N2,..., I1, I2,..., B1, B2,..., O1, 

O2,...,) of each working condition (C=1,2,3,...)， 

   Perform linear interpolation on the obtained data of various operating 

conditions, and set the length to 150. 

III. Data generation 
   Select data from one domain as the source domain and data from another 

domain as the target domain, 

   Source domain data SI, B, O (data of three fault types) and random noise 
input GAN are trained.  

For any epoch, j=1,2,3,..., n, 

( , ) ( , ) ( , )dis CE CE CEL L Y L Y L Y= + +1 0 0  

1 2 3VAE KL GD GrecL L L L  = + +  

IV. Fault classification 

   Input random noise into VAEGAN to generate 3 types of faults, with a 

data volume of 3×460×150, 
   Aggregate the normal data of the target domain and the generated data to 

form a complete data 4×460×150, 

   Use this complete data (Nreal2, Ifake1, Bfake1, Ofake1) as the training data for 
training the CNN model; 

   Take the data T (Nreal2, Ireal2, Breal2, Oreal2) of the target domain as the test 

set. 

IV. EXPERIMENTAL RESULTS AND COMPARISONS 

A. Dataset preparation 

This section provides an overview of the data preprocessing 

steps employed for input into the neural network. In our 

experimental setup, the publicly available dataset from Case 

Western Reserve University (CWRU) was utilized. To obtain 

the sub-samples for our VAEGAN input, preprocessing of the 

dataset was undertaken. The sampling frequency of 12k, and 

the fault data in the file is 10s long. The list of sub-datasets used 

is provided in TABLE II.  
TABLE II 

The Dataset’s Working Conditions 

Bearing Health 

Status 

Motor Load 

(HP) 

Approx. Motor 

Speed (rpm) 
Fault Diameter 

Normal 

0 1797 \ 

1 1772 \ 

2 1750 \ 
3 1730 \ 

Inner Race 

0 1797 0.007’’ 

1 1772 0.007’’ 
3 1750 0.007’’ 

4 1730 0.007’’ 

Ball 

0 1797 0.007’’ 
1 1772 0.007’’ 

2 1750 0.007’’ 

3 1730 0.007’’ 

Outer Race 

0 1797 0.007’’ 

1 1772 0.007’’ 

2 1750 0.007’’ 
3 1730 0.007’’ 

The first step involves partitioning the entire dataset into 

multiple sub-samples and each sub-signal is defined with a 

length of 10,000 data points. Within the dataset files, a 

substantial volume of data pertains to the normal state of the 

bearing. The data step size for normal bearings is set at 500, 

whereas for faulty bearings, it is 240. This results in a total of 

620 groups of normal data and 460 groups of fault data. 

1) Envelope spectrum and order analysis are performed on 

each set of data with a length of 10000, resulting in an envelope 

order spectrum with a length of 5000. 

2) By calculating the fault frequency of the bearing and 

converting it into the fault order, it is determined that the fault 

order of the inner ring fault, outer ring fault, and rolling element 

is between 2.5 and 8.  

3) The envelope order spectrum with a data length of 5000 is 

interpolated to the fault order range using linear interpolation, 

resulting in a final data length of 150. 

B. Experimental dataset group division 

During the experiment, the data from working condition 1 

was divided into three parts: inner ring fault, rolling element 

fault, and outer ring fault. These three sets of data were used as 

real sample inputs for VAEGAN to generate corresponding 

synthetic fault data. For working condition 2, only normal data 

was used for training, obtained after preprocessing the data. The 

data length for the three types of faults in working condition 1 

was 3×460×150, while the length of normal data for working 

condition 2 was 620×150, and the fault data length was 

3×460×150. Among these, 460 groups of normal data were used 

for training and 160 groups for testing. The experiment was 

conducted with four health states of the bearing, including 

normal, inner ring failure, rolling element failure, and outer ring 

failure. The data, initially assigned numbers 0, 1, 2, and 3 
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according to the load, represented four unique working 

conditions, each characterized by different speed and load 

parameters. These subsets were subsequently renumbered 1, 2, 

3, and 4 based on the associated load, with each new number 

denoting a specific combination of speed and load. This 

resulted in a total of 6 groups, as shown in TABLE III. 
TABLE III 

Experimental Data Division 

Experiment 

Number 

Training set (working 

conditions) 

Test set (working 

conditions) 

E I 1 2 

E II 1 3 
E III 1 4 

E IV 2 3 

E V 2 4 
E VI 3 4 

C. Experimental results and discussions 

In this experiment, the learning rate, training batch and other 

experimental parameters involved are shown in TABLE IV. 

During the experiment, the data t-SNE feature 

dimensionality reduction map after VAEGAN was generated, 

as shown in Fig. 4. It is clearly classified into four groups 

because of four kinds of fault. 
TABLE IV 

Experimental parameter design 

Parameter Value Parameter Value 

VAEGAN Epoch 41 VAEGAN Learning Rate 0.0001 

VAEGAN Batch Size 16 Noise Length 100 

Latent dimension 100   0.5 

  0.5   0.01 

1  1 2  1 

3  0.01 CNN Learning Rate 0.0001 

CNN Epoch 20 CNN Batch Size 16 

 
Fig. 4. t-SNE feature dimensionality reduction plot of generated data. 

Consistent results across multiple experiments were noted, 

and the result of one of these experiments was selected for 

presentation, as illustrated in Fig. 5, with respective accuracies 

of 92.81%, 86.72%, 92.34%, 86.88%, 93.44%, and 93.28%. 

The data in the experiment were in four working conditions and 

six migrations respectively. From Fig. 5, during the migration 

process, the average accuracy was basically over 90% which 

indicates that the proposed method is indeed effective. 

In order to reflect the superiority of the proposed method, we 

proceeded to compare the approach outlined in this paper with 

the FFT spectrum-based method. In order to reflect the single 

variable of the experiment, the dimensionality of the data was 

maintained throughout the preprocessing steps. Following the 

FFT transformation, the fault characteristic frequency was 

determined and confirmed. In this context, data within the 

frequency range of 20Hz to 200Hz was selected and 

interpolated linearly to yield a dataset of 150 points. 

As depicted in Fig. 6, it is evident that, when considering 

FFT-VAEGAN as the control experiment, its multiple sets of 

experimental results hover around 50%, significantly inferior to 

the performance of EOS-VAEGAN. This outcome further 

corroborates the effectiveness of the envelope order spectrum 

in extracting domain-independent fault characteristics and, 

consequently, the efficacy of our proposed methodology.  

 
Fig. 5. Six sets of experimental results of four different working conditions. 

 
Fig. 6. The results of the baseline. 

Then, we maintained the structure of the fault diagnosis 

model and varied the data generation approach, conducting 

multiple sets of experimental comparisons as illustrated in 

TABLE V. 
TABLE V 

Multiple sets’ results of experimental comparisons 

          Accuracy   
Model 

E I 
(%) 

E II 
(%) 

E III 
(%) 

E IV 
(%) 

E V 
(%) 

E VI 
(%) 

Mean 
(%) 

FFT_GAN 50.0 50.0 50.0 57.7 36.7 48.9 49.1 

FFT-WGAN 74.7 75.0 51.9 75.0 51.9 51.9 63.4 

FFT_VAE 75.8 75.0 75.3 74.8 58.3 69.2 71.4 

FFT_VAEGAN 50.0 50.3 50.0 50.0 50.0 50.0 50.1 

EOS-GAN 86.1 89.7 95.5 85.3 83.6 76.1 86.1 

EOS-WGAN 50.3 70.3 80.2 70.3 80.2 80.2 71.9 

EOS-VAE 83.0 91.4 94.6 77.7 84.7 84.1 85.9 

EOS-VAEGAN 92.8 86.7 92.3 86.9 93.4 93.3 90.9 

Through comparison with experiments using other methods, 

it is evident that the envelope order spectrum can effectively 

reduce the domain difference between different working 

conditions and narrow the data distribution of the two domains. 

Normal inner ball outer 
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In contrast, the Fourier spectrum is significantly influenced by 

the equipment’s working conditions. 
TABLE VI 

Comparison of EOS-VAEGAN, MAML, DAN, and SNN 

 Accuracy (%) Time (s) 

EOS-VAEGAN 94.83±1.21 274.11 

MAML[27] 90.89±1.70 1063.21 

DAN[28] 90.36±4.58 1333.64 

SNN[29] 91.76±5.34 198.76 

To further validate the effectiveness and reliability of the 

model, additional reproducibility experiments were conducted. 

The mean and variance of multiple experiment results were 

computed, and comparisons were made with several algorithms 

for small-sample fault diagnosis, including Model-Agnostic 

Metalearning (MAML) , Domain Adaptation Network (DAN) , 

and Siamese Neural Network (SNN)  algorithms. The 

comparative results are presented in TABLE VI. The results 

from the table clearly demonstrate that our proposed EOS-

VAEGAN method outperforms in terms of both average 

performance and reliability. 

V. CONCLUSIONS 

This paper proposes an enhanced VAEGAN data generation 

method based on the envelope order spectrum that spans the 

data from one working condition to another, ensuring data 

privacy while providing diagnostic guidelines for healthy 

conditions. The method effectively addresses the challenge of 

insufficient labeled training data under new working conditions, 

achieving cross-domain data augmentation and fault diagnosis, 

all while safeguarding data privacy. Currently, using the data to 

create the envelope order spectrum involves extracting 

characteristics that are independent of work condition. These 

characteristics are then used to provide pseudo-features to 

equipment under other working conditions, which can be tested 

using its own unique characteristics. Through comparative 

experiments, the average accuracy of the six migration 

experiments reached 94.83%. The feasibility of this method has 

been verified, fully utilizing the information in the data. 

Despite achieving satisfactory results, the current application 

focus is on bearings, thus we have gained an understanding of 

the failure frequency of bearings. Subsequently, further 

research will be conducted to apply this technology to other 

industrial equipment and components, like pumps, reducers and 

gearbox. 

REFERENCES 

[1] Y. Li, Y. Yang, K. Feng, M. J. Zuo, and Z. Chen, "Automated and 

Adaptive Ridge Extraction for Rotating Machinery Fault 

Detection," IEEE/ASME Transactions on Mechatronics, vol. 28, no. 

5, pp. 2565-2575, 2023. 
[2] K. Feng, J. C. Ji, K. Wang, D. Wei, C. Zhou, and Q. Ni, "A novel 

order spectrum-based Vold-Kalman filter bandwidth selection 

scheme for fault diagnosis of gearbox in offshore wind turbines," 
Ocean Engineering, vol. 266, p. 112920, 2022. 

[3] K. Feng, J. C. Ji, Q. Ni, Y. Li, W. Mao, and L. Liu, "A novel 

vibration-based prognostic scheme for gear health management in 
surface wear progression of the intelligent manufacturing system," 

Wear, vol. 522, p. 204697, 2023. 

[4] W. Hu, J. Yuan, H. Jiang, Q. Zhao, C. Li, and Z. Yao, "Tensor 
Denoising Assisted Time-Reassigned Synchrosqueezing Wavelet 

Transform for Gear Fault Diagnosis," IEEE Transactions on 

Instrumentation and Measurement, vol. 72, pp. 1-12, 2023. 

[5] L. Wang, Z. Liu, H. Cao, and X. Zhang, "Subband averaging 
kurtogram with dual-tree complex wavelet packet transform for 

rotating machinery fault diagnosis," Mechanical Systems and Signal 

Processing, vol. 142, p. 106755, 2020. 
[6] Z. Liu, D. Peng, M. J. Zuo, J. Xia, and Y. Qin, "Improved Hilbert–

Huang transform with soft sifting stopping criterion and its 

application to fault diagnosis of wheelset bearings," ISA 
Transactions, vol. 125, pp. 426-444, 2022. 

[7] S. Gao, Q. Wang, and Y. Zhang, "Rolling Bearing Fault Diagnosis 

Based on CEEMDAN and Refined Composite Multiscale Fuzzy 
Entropy," IEEE Transactions on Instrumentation and Measurement, 

vol. 70, pp. 1-8, 2021. 

[8] Y. Xue, R. Yang, X. Chen, Z. Tian, and Z. Wang, "A Novel Local 
Binary Temporal Convolutional Neural Network for Bearing Fault 

Diagnosis," IEEE Transactions on Instrumentation and 

Measurement, vol. 72, pp. 1-13, 2023. 
[9] M. Shi et al., "Deep hypergraph autoencoder embedding: An 

efficient intelligent approach for rotating machinery fault 

diagnosis," Knowledge-Based Systems, vol. 260, p. 110172, 2023. 
[10] Y. Liu, X. Wang, Z. Zeng, W. Zhang, and H. Qu, "An event-driven 

Spike-DBN model for fault diagnosis using reward-STDP," ISA 

Transactions, vol. 140, pp. 55-70, 2023. 

[11] L. Liu, Z. Zhi, Y. Yang, S. Shirmohammadi, and D. Liu, "Harmonic 

Reducer Fault Detection with Acoustic Emission," IEEE 

Transactions on Instrumentation and Measurement, 2023. 
[12] T. Peng, C. Shen, S. Sun, and D. Wang, "Fault Feature Extractor 

Based on Bootstrap Your Own Latent and Data Augmentation 
Algorithm for Unlabeled Vibration Signals," IEEE Transactions on 

Industrial Electronics, vol. 69, no. 9, pp. 9547-9555, 2022. 

[13] Y. Xu et al., "Cross-Modal Fusion Convolutional Neural Networks 
With Online Soft-Label Training Strategy for Mechanical Fault 

Diagnosis," IEEE Transactions on Industrial Informatics, vol. 20, 

no. 1, pp. 73-84, 2024. 
[14] D. Wang, Y. Chen, C. Shen, J. Zhong, Z. Peng, and C. Li, "Fully 

interpretable neural network for locating resonance frequency bands 

for machine condition monitoring," Mechanical Systems and Signal 
Processing, vol. 168, p. 108673, 2022. 

[15] S. Sun, H. Huang, T. Peng, C. Shen, and D. Wang, "A Data Privacy 

Protection Diagnosis Framework for Multiple Machines Vibration 
Signals Based on a Swarm Learning Algorithm," IEEE Transactions 

on Instrumentation and Measurement, vol. 72, pp. 1-9, 2023. 

[16] S. Sun, H. Huang, T. Peng, and D. Wang, "An Improved Data 
Privacy Diagnostic Framework for Multiple Machinery 

Components Data Based on Swarm Learning Algorithm," IEEE 

Transactions on Instrumentation and Measurement, vol. 72, pp. 1-
9, 2023. 

[17] B. Hou, Y. Chen, H. Wang, Z. Peng, K. L. Tsui, and D. Wang, 

"OSESgram: Data-Aided Method for Selection of Informative 
Frequency Bands for Bearing Fault Diagnosis," IEEE Transactions 

on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022. 

[18] K. Zhou, E. Diehl, and J. Tang, "Deep convolutional generative 
adversarial network with semi-supervised learning enabled physics 

elucidation for extended gear fault diagnosis under data limitations," 

Mechanical Systems and Signal Processing, vol. 185, p. 109772, 
2023. 

[19] Y. Xiao, H. Shao, S. Han, Z. Huo, and J. Wan, "Novel Joint Transfer 

Network for Unsupervised Bearing Fault Diagnosis From 
Simulation Domain to Experimental Domain," IEEE/ASME 

Transactions on Mechatronics, vol. 27, no. 6, pp. 5254-5263, 2022. 

[20] L. Zuo, F. Xu, C. Zhang, T. Xiahou, and Y. Liu, "A multi-layer 
spiking neural network-based approach to bearing fault diagnosis," 

Reliability Engineering & System Safety, vol. 225, p. 108561, 2022. 

[21] H. Su, L. Xiang, A. Hu, Y. Xu, and X. Yang, "A novel method based 
on meta-learning for bearing fault diagnosis with small sample 

learning under different working conditions," Mechanical Systems 

and Signal Processing, vol. 169, p. 108765, 2022. 
[22] T. Yan, D. Wang, and Y. Wang, "Discrimination- and Sparsity-

Driven Weight-Oriented Optimization Model for Interpretable 

Initial Fault Detection and Fault Diagnosis," IEEE Transactions on 
Instrumentation and Measurement, vol. 73, pp. 1-13, 2024. 

[23] K. Rombach, G. Michau, and O. Fink, "Controlled generation of 

unseen faults for Partial and Open-Partial domain adaptation," 
Reliability Engineering & System Safety, vol. 230, p. 108857, 2023. 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3390242

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 30,2024 at 06:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 
 

[24] R. Wang, Z. Chen, and W. Li, "Gradient flow-based meta generative 
adversarial network for data augmentation in fault diagnosis," 

Applied Soft Computing, vol. 142, p. 110313, 2023. 

[25] T. Li, Z. Peng, H. Xu, and Q. He, "Parameterized Domain Mapping 
for Order Tracking of Rotating Machinery," IEEE Transactions on 

Industrial Electronics, vol. 70, no. 7, pp. 7406-7416, 2023. 

[26] Y. Li, F. Xu, and C. G. Lee, "Self-Supervised Metalearning 
Generative Adversarial Network for Few-Shot Fault Diagnosis of 

Hoisting System With Limited Data," IEEE Transactions on 

Industrial Informatics, vol. 19, no. 3, pp. 2474-2484, 2023. 
[27] S. Zhang, F. Ye, B. Wang, and T. G. Habetler, "Few-Shot Bearing 

Fault Diagnosis Based on Model-Agnostic Meta-Learning," IEEE 

Transactions on Industry Applications, vol. 57, no. 5, pp. 4754-
4764, 2021. 

[28] J. Zhu, N. Chen, and C. Shen, "A New Multiple Source Domain 

Adaptation Fault Diagnosis Method Between Different Rotating 
Machines," IEEE Transactions on Industrial Informatics, vol. 17, 

no. 7, pp. 4788-4797, 2021. 

[29] J. Zhao et al., "A novel hierarchical training architecture for Siamese 
Neural Network based fault diagnosis method under small sample," 

Measurement, vol. 215, p. 112851, 2023. 

 
Shilong Sun received a Ph.D. degree from the City 

University of Hong Kong in 2018. He is currently an Assistant 

Professor at the Harbin Institute of Technology, Shenzhen, 

China.  

He nurtures keen interests in vibration energy harvesting 

design, fault diagnosis and prognosis, decision-making with 

Artificial Intelligence, and deep learning for industrial data. 
Now, he focuses on the remaining equipment life estimation 

research with deep learning and smart energy harvesting 

techniques.  

  
Hao Ding was born in bozhou, China. He received the B.S. 

degrees in marine engineering from School of Engineering, 
Ocean University of China, China in 2022. He is currently 

working toward the M.S. degree in mechanical engineering in 

School of Mechanical Engineering and Automation, Harbin 

Institute of Technology, Shenzhen. His research interests 

include intelligent fault diagnosis and graph learning. 

 

 

Haodong Huang was born in jingmen, China. He received 
the B.S. degrees in mechanical engineering from School of 

Mechanical Engineering and Automation, University of 

Northeast of China, China in 2021. He is currently working 

toward the M.S. degree in mechanical engineering in School of 

Mechanical Engineering and Automation, Harbin Institute of 

Technology, Shenzhen. His research interests include 

mechanical fault diagnosis and condition monitoring. 

 
 

 

Zida Zhao was born in xingtai, China. He received the B.S. 

degrees in mechanical engineering, North China Electric 

Power University, China in 2022. He is currently working 

toward the M.S. degree in mechanical engineering in School of 

Mechanical Engineering and Automation, Harbin Institute of 
Technology, Shenzhen. His research interests include 

mechanical fault diagnosis and biped robot. 

 

 

Dong Wang received the Ph.D. degree from the City 

University of Hong Kong, Hong Kong, in 2015. He was a 

Senior Research Assistant, a Postdoctoral Fellow, and a 

Research Fellow with the City University of Hong Kong.  
He is currently an Associate Professor with the Department 

of Industrial Engineering and Management, Shanghai Jiao 

Tong University, Shanghai, China, where he is also with the 

State Key Laboratory of Mechanical System and Vibration. 

His research interests include sparse and complex measures, 

signal processing, prognostics and health management, 

condition monitoring and fault diagnosis, statistical learning and machine learning, 
statistical process control, and nondestructive testing. Dr. Wang is an Editorial Board 

Member for Mechanical Systems and Signal Processing. He is an Associate Editor 

for the IEEE Transactions on Instrumentation and Measurement, Measurement, 

IEEE Sensors Journal and Journal of Dynamics Monitoring and Diagnostics. 

 

Wenfu Xu received the B.E. and M.E. degrees in control 

engineering from the Hefei University of Technology, Hefei, 
China, in 2001 and 2003, respectively, and the Ph.D. degree in 

the control science and engineering from the Harbin Institute 

of Technology, Harbin, China, in 2007. He was a Research 

Associate with the Department of Mechanical and Automation 

Engineering, The Chinese University of Hong Kong, Hong 

Kong. He is currently a Professor with the School of 

Mechanical Engineering and Automation, Harbin Institute of 

Technology, Shenzhen, China. His research interests include reconfigurable robots, 
space robots, and bionic robots. 

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3390242

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 30,2024 at 06:59:09 UTC from IEEE Xplore.  Restrictions apply. 


