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A B S T R A C T   

Industrial machinery often produces vibration signals that can serve as indicators of underlying faults. However, 
these signals often need to be labeled, presenting a challenge for accurate and interpretable fault diagnosis. While 
supervised learning methods, such as deep neural networks, have been applied for fault diagnosis, they need help 
in effectively distinguishing between different vibration-related faults. In response to this issue, our study in
troduces an innovative approach for automatic fault diagnosis through the application of the Bootstrap Your Own 
Latent and Dynamical Systems Model Discovery algorithm (BYOLDIS). This method not only addresses the 
challenge of unlabelled signals but also provides readily interpretable results. The proposed methodology con
sists of three fundamental steps. First, we derive a matrix of differential equations to capture the dynamic 
behavior of faulty bearings. Second, we employ a contrastive learning network alongside a time-delay embed
ding matrix to reconstruct the coordinates of the fault-dynamical system. Lastly, we construct a library of fault 
machine dynamic polynomial equations, incorporating prior constraints based on physical models. To assess the 
effectiveness and robustness of our proposed method, we conducted both simulations and experiments. The 
results of these case studies affirm that BYOLDIS can accurately diagnose bearing faults and offer dynamic ex
planations for the diagnostic outcomes. This suggests that BYOLDIS holds substantial promise as a diagnostic tool 
for processing unlabelled vibrational data.   

1. Introduction 

Bearings are widely used in rotating machinery, and their health 
status is critical for ensuring stable operations. Fault diagnosis is a 
crucial aspect of the mechatronic system design and maintenance [1]. 
With the emergence of Industry 4.0, intelligent fault diagnosis frame
work networks have gained much attention from enterprises. Intelligent 
fault diagnosis involves the application of artificial intelligence (AI) 
algorithms to traditional diagnosis methods, such as deep learning (DL), 
transfer learning (TL), contrastive learning (CL), meta-learning (ML), 
etc. DL-based fault diagnosis procedures typically involve two steps: 
data collection and health state recognition [2]. Due to its high feature 
extraction capability, DL can automatically extract meaningful features. 
Recently, numerous DL-based studies have been presented to diagnose 
bearing faults, such as autoencoder networks [3], convolutional neural 

networks [4], and deep-belief networks [5]. However, the existing 
research largely overlooks two crucial issues regarding the neural 
network method in machine fault diagnosis: 1) the amount of labeled 
data significantly affects the performance of AI machine fault diagnosis 
methods, and 2) most neural network structures are black boxes and lack 
the interpretation of the diagnosis result. 

In the context of industrial applications, acquiring sufficient labelled 
data to train neural networks for machine fault diagnosis is often chal
lenging due to harsh working conditions. Scholars have attempted to 
address the issues of label and data insufficiency, including TL, CL and 
ML methods. TL can mitigate labelled data imperfections by utilizing 
prior knowledge learned from a sufficiently labelled dataset. Still, it 
relies on minimal distribution discrepancy between the source and 
target domain data, which may not be feasible in real industrial appli
cations [6–8]. For example, Zhang [9] added the maximum mean 
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discrepancy (MMD) and weight regularization to the loss function to 
achieve domain adaption. Xia [10] proposed a multisource domain 
adaptation network to fuse the multidomain features. Some other 
scholars used the adversarial domain network (ADN) to reduce the 
domain distribution discrepancy by making the domain discriminator 
unable to distinguish the domain to which the data belongs to learn the 
transferable feature of bearing faults in the target domain [11,12]. In 
contrast, CL is a powerful unlabelled data learning method that has been 
successfully used in self-supervised representation learning in computer 
vision. Still, its application in machine fault diagnosis is limited. Several 
studies have proposed CL-based approaches that can directly extract 
fault features from unlabelled vibration signals without labelled data 
[13–16] and have utilised the CL feature extractor to solve few-shot 
learning fault diagnosis tasks. Peng [17] proposed a contrastive 
learning approach based on the Bootstrap Your Own Latent network. 
This approach can directly extract disguisable fault features from unla
belled vibration signals using a data augmentation method. Rombach 
[18] proposed a CL-based machine fault detection and diagnostics 
method by constructing reasonable positive and negative pairs to ensure 
that the model is sensitive to unseen fault data. Chen [19] proposed a 
supervised CL method for high-frequency machine vibration signal fault 
diagnosis in the few-shot learning situation. Lu [20] combined CL with a 
label diffusion module to deal with a few-shot learning fault diagnosis 
task. 

Additionally, meta-learning (ML) models have been utilized to 
reduce data reliance in intelligent machine fault diagnosis [21–23]. Pei 
[24] proposed an enhanced few-shot Wasserstein auto-encoder (fs-WAE) 
to reverse the negative effect of imbalance. Li [25] proposed a novel 
meta-learning fault diagnosis method (MLFD) based on model-agnostic 
meta-learning to deal with limited data and complex working condi
tions. However, most studies require labelled information to guide the 
neural network learning classification for fault diagnosis. This is because 
most current neural network fault diagnosis studies are migration ap
plications of the models proposed for solving computer vision and nat
ural language processing problems. These neural networks do not have 
any prior constraints and must feed a large amount of data to converge 
to a posterior probability result independent of the prior. Fortunately, 
the prior constraints of the fault signal collected from the machine are 
expressible and governed by a multibody dynamics model. Therefore, a 
fault diagnosis model without label data can exist. One of the objectives 
of this study is to develop a neural network model that can achieve 
label-free fault diagnosis. We look forward to the network to analyse the 
dynamic features of the input signal as humans process the vibration 
signal. This neural network contains a multibody dynamics model that 
offers constraints on machinery fault signals prior to network training. 
This method can improve current neural network-based fault diagnosis 
studies that lack knowledge constraints and require a large amount of 
data to converge to new parameters for fault classification. Therefore, 
the primary goal of this study is to develop a neural network-based 
model that can achieve fault diagnosis of unlabelled data by incorpo
rating the knowledge constraints of multibody dynamics. 

In addition to the challenges of insufficient labelled data and 
imbalance, another issue in intelligent fault diagnosis is the need for 
more interpretability of neural networks. Current research on inter
pretable fault diagnosis focuses on two aspects: time series character
istics and signal morphology. The former is based on statistical, spectral, 
and time-frequency characteristics of the signals, while the latter is 
based on geometric feature extraction methods such as impact-impulse 
analysis [26,27]. Several studies have proposed novel approaches for 
interpretable fault diagnosis, including the use of Gramian-based noise 
reduction strategies [28], fully interpretable neural networks [29], deep 
wavelet transform approaches [30], and continuous wavelet convolu
tional layers [27]. For example, Yuan [28] first proposed a simple but 
efficient Gramian-based noise reduction strategy called Gramian Noise 
Reduction (GNR) based on the periodic self-similarity of vibrational 
signals. Wang [29] designed a fully interpretable neural network for 

machine condition monitoring, which is a redesigned extreme learning 
machine combined with signal pre-processing methods, such as wavelet 
transform, square envelope, and Fourier transform. Michau [30] pro
posed a fully learnable deep wavelet transform approach that embeds 
the crucial properties of the fast discrete wavelet transform and also 
designed a new activation function to achieve industrial asset moni
toring. Other studies have explored the use of physics-based models to 
achieve a trustworthy diagnosis by extracting crucial characteristics of 
the governed dynamic equation from the input fault-bearing signal [31, 
32]. The signal morphology-based interpretable neural network is based 
on the impact-impulse geometric feature extraction method. Ye [26] 
proposed a deep morphological network to learn geometric features for 
interpretable gearbox fault diagnosis. Li [27] designed a continuous 
wavelet convolutional layer to impact impulse separation for inter
pretable fault diagnosis. Zhou [31] proposed a probabilistic Bayesian 
deep learning framework to achieve a trustworthy diagnosis via an 
uncertainty-aware model to understand the unknown fault information. 
Zuo [32] proposed a multi-layer spiking neural network for bearing fault 
diagnosis, which can provide interpretability transparency to the 
different bearing faults. 

Inspired by the studies of data-driven dynamic equations discovered 
[33,34], another target is to find the crucial characteristic of the gov
erned dynamic equation from the input fault-bearing signal, allowing 
the diagnosis result to have an excellent physical interpretation. How
ever, developing physics-based models for diagnosis applications can be 
challenging due to the complexity of the systems and the large vari
ability that may exist in system parameters [35]. Nonetheless, inspired 
by data-driven dynamic equations, researchers aim to find the crucial 
characteristics of the dynamic equation that can allow for a physical 
interpretation of the diagnosis results. 

Therefore, this research work mainly focuses on two issues in the 
intelligent fault diagnosis area which are interpretability and insuffi
cient label signal. One of the challenges is the need for more interpret
ability in most intelligent fault diagnosis methods. Interpretability is 
important because it allows engineers and operators to understand the 
reasoning behind the diagnosis and take appropriate actions. To address 
this issue, current research on interpretable fault diagnosis focuses on 
time series characteristics and signal morphology. These methods aim to 
extract meaningful features from the data that domain experts can easily 
interpret. Another challenge is the need for a large amount of labeled 
data to train neural networks. Labeling data can be time-consuming and 
expensive, especially in industrial settings where the data may be noisy 
and complex. To overcome this challenge, researchers have been 
exploring the use of unsupervised learning methods, which do not 
require labeled data. Unsupervised learning methods can learn patterns 
in the data and use them to make predictions without the need for 
human annotations. 

In this context, the proposed study aims to diagnose machine faults 
directly from raw industrial vibration signals collected under industrial 
conditions. The authors use a physical model-based equation library to 
shape prior constraints and directly complete automatic fault diagnosis 
without labeling the input data. They also propose a contrastive learning 
algorithm based on Bootstrap Your Own Latent (BYOL) network to 
determine the dynamic system equation from the fault-bearing signal 
input. Finally, they present an automatic fault diagnosis method 
combining the BYOL network and the discovered dynamic system 
equation method (BYOLDIS) to offer a straightforward physical inter
pretation of the diagnosis results. 

Overall, the proposed study aims to diagnose the fault type by 
directly handling the raw industrial vibration signals collected under 
industrial conditions. The main contributions of this study are as 
follows. 

(1) Building a physical model-based equation library to shape prior 
constraints, enabling automatic fault diagnosis without labelling input 
data. 

(2) Designing a contrastive learning algorithm based on Bootstrap 
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Your Own Latent network, consisting of a dual network, the online and 
target network, to determine the dynamic system equation from the 
fault-bearing signal input. 

(3) Proposing an automatic fault diagnosis method combining the 
BYOL and BYOLDIS to offer a straightforward physical interpretation. 

The outline of this paper is organized as follows. Section 2 introduces 
the related work of BYOL network and the coordination discovery 
method. Section 3 presents the principles of the proposed algorithm. 
Section 4 presents an experimental study of the proposed model, and 
Section 5 summarizes this work. 

2. Preliminaries 

The neural network-based intelligence fault diagnosis methods have 
strong feature extraction ability and achieve effective fault diagnosis. 
However, those methods require data for training. Most current neural 
network-based fault diagnosis studies are migration applications of the 
proposed initial models for solving computer vision and natural lan
guage processing problems. These neural networks do not know the task 
and need to feed a large amount of data to converge to the final task used 
knowledge. The fault signal knowledge is expressible and governed by 
the multibody dynamics model. Therefore, we suppose adding some 
dynamics knowledge to reduce the training data is feasible. This paper 
proposes to embed the dynamic system into a neural network for giving 
network knowledge of diagnosis, achieving label-free fault diagnosis 
based on the dynamic system discovery and reconstruction from input 
vibration signals. In this paper, we utilize BYOL contractive learning 
methods’ characteristics of label-free learning and dynamics system 
discovery methods to reconstruct dynamic equations to realize fault 
diagnosis. This Section describes the crucial background knowledge 
about Bootstrap Your Own Latent (BYOL) network, sparse identification 
of nonlinear dynamics (SINDy), and delay-time embedding. 

2.1. BYOL network 

BYOL [36] network can extract the prominent features directly 
without labeled data, which means that the BYOL network can achieve 
effective feature learning for unseen unlabelled data. This feature of 
BYOL is handy for label-free fault diagnosis because it requires stable 
network convergence without any external supervision information. As 
shown in Fig. 1, BYOL [36] is a dual structure that consists of online and 
target networks. The online network is defined by a set of weights called 
θ. The encoder fθ has a ResNet design [37], and the encoder output Rθ is 
a network-learned representation of the input training samples. The 
projector qθ and predictor gθ qθ, gθconsist of a multi-layer perceptron 
(MLP), and the output dimensions are the same. The target network has 
the same structure as the online network without a predictor gθ but has a 
stop-gradient layer to block the weight ξ gradient update. ξ is a moving 
average of θ. 

BYOL processes two positive pairs generated from samples s and s′. 
The online network outputs representation yθ of the first processed 
sample s and the target network outputs y′ξ from the second processed 
sample s′. 

Subsequently, BYOL utilizesgθ(yθ) and sg(y′ξ) to calculate the 
network training loss: l2-Normalized gθ(yθ) and sg(y′ξ). Then, defining 
gθ(yθ)≜gθ(yθ)/‖gθ(yθ)‖2 and sg(y′ξ)≜sg(y′ξ)/

⃦
⃦sg(y′ξ)

⃦
⃦

2 At last, the loss 
function of the BYOL network is defined as the mean squared error be
tween the normalized prediction gθ(yθ) and normalized representation 
sg(y′ξ), as shown in the following equation: 

L θ,ξ≜
⃦
⃦gθ(yθ) − sg

(
y′ξ
)⃦
⃦

2

2 (1) 

The loss L θ,ξ in Eq. (1) requires s and s′ to be fed separately into the 
online and target networks for computation. The BYOL updating prog
ress can be summarized in two steps: Firstly, updating the weights θ by 
using the gradient; Secondly, updating the weights ξ by using the 
updated θ. The following two equations can describe this updating 
method: 

θ = optimizer(θ, δθ, η) (2)  

ξ = τξ+(1 − ε)θ (3)  

where η is the learning rate of the optimizer of the network and ε is the 
target network moving average to update the hyperparameter. The 
BYOL network relies on minimizing L θ,ξ to reduce the representation 
distribution distance of inputs s, s′ and learning the representation of the 
input training data samples. 

2.2. SINDy autoencoder and delay-time embedding 

An ordinary differential equation system can be used to generate the 
simulated signal for a signal collected from the machine system. This 
ordinary differential equation describes the signal’s crucial dynamics 
characteristic. It can define the governed equations with the analysis of 
the collected signal. The SINDy autoencoder [34] is an effective, hidden 
coordination discovery method for seeking the unknown and potential 
terms of the governed equations. For systems with full-state measured 
data, the SINDy autoencoder can discover the equations of the dynamic 
system. The network structure of the SINDy autoencoder is illustrated in  
Fig. 2. 

The SINDy autoencoder can map the measurement data yinto hidden 
coordination zand discover a nonlinear differential equation ż = Θ(z)Ξ. 
In the SINDy model, Θ is the candidate equation term library of the 
unknown system. Ξ is a sparse matrix representing the weight of each 
candidate term in the differential equation. In addition to the conven
tional reconstruction loss L recon, the SINDy autoencoder also contains 
other loss function terms to guide the encoder ϕ and learn the reliable 
hidden coordination z via equation constraints: 

Fig. 1. Framework of the BYOL network.  Fig. 2. Structure of the SINDy autoencoder algorithm.  
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L ż≜
⃦
⃦∇yϕ(y)ẏ − Θ(ϕ(y))Ξ

⃦
⃦2

2 (4)  

L ẏ≜‖ẏ − ∇zψ(ϕ(y))Θ(ϕ(y))Ξ‖2
2 (5) 

Besides, a sparsity constraint is added to get sparse equations. The 
loss of the SINDy autoencoder is, λ1,λ2,λ3are the hyperparameters to 
balance loss terms of the loss. 

The state-space reconstruction technology can capture the dynamics 
systems information when the systems do not have full state-measured 
data. According to the state-space reconstruction in the delay coordi
nate method proposed by Packard [38], the unknown system charac
teristics can be analyzed by sampling this system’s partial output time 
series. For systems with incomplete observations, the research in [39] 
showed that delay coordinate embedding could capture nonlinear sys
tems’ dynamics. After obtaining a measurement time series y, the delay 
coordinate embedding can be built as a Hankel matrix H: 

H =

⎡

⎢
⎢
⎣

y(τ) y(2τ) ⋯ y(qτ)
y(2τ) y(3τ) ⋯ y((q + 1)τ)

⋮ ⋮ ⋱ ⋮
y(nτ) y((n + 1)τ) ⋯ y((n + q − 1)τ)

⎤

⎥
⎥
⎦ (6)  

where τ is the delay time of the measured time series y, and n is the 
embedding dimension. Hankel matrix is a set H = [h1,h2,…,hq], and hi =

[y(iτ), y((i + 1)τ),…, y((i + n − 1)τ)]T . According to Takens’ theorem, 
the embedding dimension should satisfy the equation n ≥ 2d + 1, which 
d is the unknown system’s dimension. And in the research [40], the 
authors recommend the parameter n follow nτ = 0.1 for effectively 
reconstructing the critical characteristic of the anonymous dynamics 
system. 

3. Built up the bootstrap your own latent and discovery system 
(BYOLDIS) network 

In this Section, we describe the building process of the bootstrap your 
own latent and discovery system (BYOLDIS) network. This method adds 

an equation library based on the dynamic equations to the neural 
network, forcing the network to choose one of the three fault modes 
(inner race fault, outer race fault, and roller fault) when reconstructing 
the dynamic system to realize fault diagnosis. 

As shown in Fig. 3, BYOL helps the network discover the general 
characteristics of the positive pairs to achieve an effective dynamic co
ordinate reconstruction; DIS represents the dynamics system discovered 
for diagnosis. These two crucial parts combined into the BYOLDIS 
diagnosis of label-free conditions. 

Generally, only one vibration sensor is assembled on the pedestal for 
bearing fault diagnosis. Only the acceleration information of one degree 
of freedom (DOF) is known. However, in building a fault-bearing dy
namics system, two orthogonal DOF information (acceleration, velocity, 
displacement) of the shaft and pedestal is necessary. In reference [40], 
Bakarji proposed a deep delay autoencoder, which utilizes the universal 
approximation properties of neural networks to approximate the Phase 
space coordinates from the partial measurement signal input for signal 
governing equations discovery. In this study, for the 4DOF fault-bearing 
system, only 1DOF information is known, which is a typical partial 
measurement issue. Therefore, a delay time embedding-based coordi
nate encoder inspired by the Bakarji study is utilized to conduct 4DOF 
phase space reconstruction. 

In summary, the first step of BYOLDIS is building delay time 
embedding positive pairs, which will be presented in Section 3.1. Sec
tion 3.2 offers the network structure and loss function for creating the 
dynamics system embedding a neural network. As mentioned above, for 
each DOF, the acceleration, velocity, and displacement information are 
necessary to build the 4DOF fault-bearing dynamics system. Therefore, 
the coordinate encoder needs to reconstruct the acceleration, velocity, 
and displacement information at the same time. Section 3.3 presents the 
coordinate encoder differential output calculation in the forwarding 
propagation process to rebuild the acceleration, velocity, and displace
ment information simultaneously. Section 3.4 introduces the embedding 
dynamics, fault-bearing equation library, and diagnosis method. This 
fault-bearing dynamics system is based on the multibody dynamics 

Fig. 3. Flowchart of the proposed BYOLDIS diagnosis method.  
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methods, simulating the fault-bearing by constructing contact interfer
ence. Besides, the dynamics model of Section 3.4 is specially designed to 
ensure that embedding dynamics can effectively conduct gradient in
formation transmission. Section 3.5 introduces the process of proposed 
BYOLDIS. 

3.1. Positive pairs generation 

The generation of positive pairs is crucial for the contrastive learning 
algorithm. This Section introduces how to build positive pairs with the 
Hankel matrix form. The vibration signal collected for the abnormal 
bearing is an acceleration signal. However, displacement and velocity 
signals are necessary for BYOLDIS to reconstruct the fault-bearing dy
namic equation. Generally, there are three steps for the positive pairs 
generation. Fig. 4. 

The first step is sequence integration, assuming the collected vibra
tion signal in time t is ẍ(t), the integration ẋ(t)and x(t)follow: 

ẋ(t) = ẋ(t − 1) + ẍ(t)dt
x(t) = x(t − 1) + ẋ(t)dt (7)  

where dt denotes the sampling time of the vibration signal. Because 
vibration signals ẍ are often collected for only a few seconds, the inte
gration sequence ẋand x will have a certain trend. Therefore, detrending 
for sequences ẋand x is necessary. In the latter part of this study, the 
symbols ẋand xrepresent the detrend integration sequence (i.e., 
x≜detrend(x)). x(t) will be normalized (standard deviation set as 1); ẋ(t)
and ẍ(t) multiply by the same value utilized to normalize x(t). 

The second step is determining the delay time τ. For the kind of state- 
space reconstruction issue that utilizes the coordinate delay method. If 
two coordinate components x(iτ), x((i+1)τ) are similar with each other, 
then they cannot provide independent coordinate components. How
ever, if the delay time τ is too long, the two coordinate components will 
be completely independent, leading to each dimension in the recon
struction space not correlating. Therefore, this paper uses the autocor
relation coefficient method to fund the delay time τ. The delay time τ is 
ensured via the mutual information method. For the two signal se
quences {x1

1,…, x1
m} and {x2

1,…, x2
m}, the information entropy is calcu

lated by: 

H(x) = −
∑m

i=1
Px(xi)log 2Px(xi) (8)  

where Px(xi) means the happened possibility of xi in signal sequence x. 
Then the mutual information of x1 and x2follows: 

I
(
x1, x2) = H

(
x1)+H

(
x2) − H

(
x1, x2) (9)  

where H(x1, x2) can be calculated via H(x1,x2) = −
∑m

i=1
∑n

j=1Px1 ,x2 (x1,

x2)log2Px1 ,x2 (x1, x2). When calculating the mutual information for 
ensuring delay time τ, the original signal sequence with delay is x1 =

{x1,…, xm− τ} and the delay time signal sequence is x2 = {x1+τ,…,xm}. 
After calculating the mutual information of x1 and x2, we need to 
distinguish the first local minimum value of the mutual information of 
x1,x2. Then the τ is the delay time. 

The final step is building the two Hankel matrices via Eq.(6). n is 
equal to n = tcir/τ, where tcir represents time required for bearing to 
rotate for one circle. The positive pairs (H,Hp) are collected from the 
same sequences ybut had different starting times, i.e., using 
x(τ : (n+q − 1)τ) to build Hand x(0.5(n+q − 1)τ : 1.5(n+q − 1)τ) to build 
Hp. It is noteworthy that Ḧ and Ḣ are also made in the same way. 

3.2. Framework of the BYOLDIS network 

This Section introduces the BYOLDIS network for raw signal-bearing 
fault diagnosis, where the architecture of the BYOLDIS network is shown 
in Fig. 5. The positive pairs H and Hp are input into fθ, fξ, and fault 
feature projectors qθ and qξ, respectively. Subsequently, the online 
network’s projection pθ is fed to the predictor of the online network to 
realize the prediction gθ(pθ). 

Reference [41] indicates that the projector of the original BYOL 
network can improve the representation extraction performance of a 
contrastive learning network. In this study, fault feature projectors are 
used to enhance the representation extraction performance, filter out the 
influence of noise, and extract the common features of the positive pairs 
H and Hp. 

The coordinate encoderfθ and fξare essential to map the delay co

Signal 
collected

Signal 
integration

Signal
detrend

Delay time 
clarification

Building Hankel matrix
positive pairs

Sequence integration

Delay time definition 

Hankel matrices 
development 

Three main steps for 
positive generation 

Fig. 4. Plot of the positive pairs generation.  
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ordinate embedding positive pairs into the original dynamics DOF. Ac
cording to Takens’ theorem, a diffeomorphic map between the delay- 
embedded coordinate H and the original kinematic system DOF z ex
ists. However, this diffeomorphic map is hard to determine. Therefore, 
in this study, we utilize a neural network to approximate the diffeo
morphic map function to discover the original dynamics DOF in the 
fault-bearing dynamic differential equation because the neural network 
has universal approximation properties. 

The coordinate encodersfθ and fξ consist of six fully connected layers, 
the density of the first fully connected layer is 128, and the density is 
halved layer by layer until it is equal to the DOF of the dynamic system. 
In this study, the density of the final layer is four because the fault- 
bearing simulation model is a 4-DOF model. The projector and predic
tor also consist of a multi-layer perceptron (MLP). The details of the 
parameter settings of BYOLDIS are shown in Table 1. 

To automatically realize few-shot sample fault diagnosis, prior 
knowledge constraints Θ are required. The equation library Θ(z, ż) is 
built using the fault-bearing signal generation simulation model, which 
contains the inner race, outer race, and three common roller fault types 
as candidate terms. The sparse matrix Ξ determines the candidate terms 
of the equation library Θ that are active in the fault-bearing dynamic 

model. The loss function of the BYOLDIS model consists of 5 loss terms 
(L BYOL,L z̈,L z̈4

,L z̈4 ,L z4 ). 
The first loss L BYOLguides the network to learn the invariant infor

mation of the positive pairs H and Hp, which can filter the noise and 
construct a robust coordinate transfer. The following equation gives the 
loss term. 

L BYOL =

⃦
⃦
⃦gθ(pθ)

/
‖gθ(pθ)‖2 − sg

(
pξ
)/⃦

⃦sg
(
pξ
)⃦
⃦

2

⃦
⃦
⃦

2

2
(10) 

The second loss term L z̈ can offer prior constraints to the coordinate 
encoder, usually built automatically from training with large amounts of 
data in the current neural network. Therefore, this loss term significantly 
reduces the dependence of the BYOLDIS network model on the data 
label,z̈andz̈are normalized in Eq.(11): 

L z̈ =
∑4

i=1
‖(z̈i − mean(z̈i))/std(z̈i) − (z̈i − mean(z̈i))/std(z̈i)‖

2
2 (11) 

The third loss term L z̈4
is used to discover the accurate dynamic 

system for automatic fault diagnosis: 

L z̈4
= ‖z̈4 − z̈4‖

2
2 (12) 

The last two-loss terms L z̈4 and L z4 let the 4th component of the 
coordinate encoder z,z̈ to be an exact reconstruction of the measurement 
signal x,ẍ. Those loss terms can guarantee that the dynamics of the co
ordinate (DOF of the system) are directly relevant to the measured 
quantity x: 

L z̈4 = ‖ẅ − z̈4‖
2
2 (13)  

L z4 = ‖w − z4‖
2
2 (14)  

Fig. 5. Framework of the BYOLDIS network.  

Table 1 
Parameters setting of BYOLDIS.  

Part Layer Number 
of layer 

Activation 
function 

Dense 

Coordinate 
encoder 

Fully 
connected  

6 Elu 
(Except for the last 
layer) 

[128,64,32, 
16,8,4] 

Projector Fully 
connected  

3 Elu [512,128,64] 

Predictor Fully 
connected  

2 Elu [64,128]  
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where ẅ&ware the first row of the Ḧ&H, respectively. 
Finally, all loss terms are combined: 

L = L BYOL + λ1L z̈ + λ2L z̈4
+ λ3L z̈4 + λ4L z4 (15) 

The weight coefficient matrixλ = [λ1, λ2, λ3, λ4] is the hypothesis that 
includes the empirical parameters. The λ2&λ3 should fulfill the 
requirement that theλ2L z̈4

&λ3L z̈4 in Eq.(15) should have two orders 
higher than the other two loss terms. The reason for making this 
requirement is because the λ2L z̈4

&λ3L z̈4 loss term directly imposing 
strong constraints on the reconstructed signal. As mentioned above, 
these two items can guarantee that the dynamics of the coordinate (DOF 
of the system) are directly relevant to the measured quantity x. Although 
the loss terms L z̈4 

and L z̈can offer the constraint information to the 
BYOLDIS network, the strong constraints which related to L z̈4 and L z4 

are the key part of signal reconstruction and faults diagnosis. Otherwise, 
the high training weight of L z̈4 and L z4 can enable the network to 
achieve rapid convergence of input signals in the early training stage, 
ensuring the stability of training. 

3.3. Coordinate derivatives computing 

To compute the differentiated ż and z̈ of the coordinate zin the co
ordinate encoder forward propagation process, derivatives of the coor
dinate encoder variables (fθ) are required when propagating the H 
derivatives (∇Hfθ,∇2

Hfθ). Given the input H, the forward propagation of 
the final layer of the coordinate encoder can be calculated as follows: 

z = f (lL− 1)WL + bL (16)  

where Lrepresents the number of coordinated layers, f(⋅)represents the 
Elu activation function, and lL− 1 is the L − 1 layer’s output. Then, the 
other layer’s forward propagation in the coordinate encoder can be 
expressed the same as Eq.(16). For example, the forward propagation of 
the jthlayer is lj = f(lj− 1)Wj + bj, and the first layer is l1 = HW1 + b1. 
According to the chain rule of deviation, the first-order derivation of 
zcan be calculated as follows: 

dz
dt

=

(

f′(lL− 1)
◦dlL− 1

dt

)

WL

dlj

dt
=

(

f′
(
lj− 1

)◦dlj− 1

dt

)

Wj

dl0

dt
=

dH
dt

W0 = ḢW0

(17) 

And the second-order derivation of zcan be calculated by 

d2z
dt2 =

(

f″(lL− 1)
◦dlL− 1

dt

◦dlL− 1

dt
+ f′(lL− 1)

◦d2lL− 1

dt2

)

WL

d2lj

dt2 =

(

f″
(
lj− 1

)◦dlj− 1

dt

◦dlj− 1

dt
+ f′(lL− 1)

◦
◦
d2lj− 1

dt2

)

Wj

d2l0

dt2 =
d2H
dt2 W0 = ḦW0

(18) 

For the activation function Elu, the first order and second derivations 
are as follows: 

f′(l) = min
(
el, 1

)
(19)  

f″(l) = el◦ε(l) (20)  

where ε(⋅) is the Heaviside function and ◦ denotes Hadamard product. 

3.4. Fault bearing equation library of BYOLDIS 

A four-DOF fault-bearing signal generation simulation model is uti
lized to build the equation library Θ. The model is summarized in Fig. 6. 
Four DOF (xs,ys,xp, and yp) are related to the movement of the shaft and 
pedestal. The following equation governs the bearing system. 
⎧
⎪⎪⎨

⎪⎪⎩

ẍs = −
(
ksxs + fx

( (
xs − xp

)
,ωs, t

))/
ms

ÿs = −
(
ksys + fy

( (
ys − yp

)
,ωs, t

))/
ms

ẍp = −
(
cpẋp + kpxp − fx

( (
xs − xp

)
,ωs, t

))/
mp

ÿp = −
(
cpẏp + kpyp − fy

( (
ys − yp

)
,ωs, t

))/
mp

(21) 

In Eq.(21), the equation fx(⋅,ωs, dt) is used to describe the sum of the 
contact forces of each roller at the contact position, which can be written 
as follows based on the Hertzian contact relationship: 

fx = kb

∑nb

j=1
relu(δ1.5

j

)
cosϕj

fy = kb

∑nb

j=1
relu(δ1.5

j

)
sinϕj

(22)  

where kb is the load-deflection factor, which depends on the contact 
geometry and the elastic contacts of the material, and ϕj represents the 
angular positions of the jthrollers, 

ϕj =
2π(j − 1)

nb
+ ωct+ϕ0 (23)  

which depends on the cage speed ωc and the cage initial position ϕ0(a 
trainable value). nbis the rollers’ number. The relationship between the 
cage speed ωc and shaft speed ωs is given: 

ωc =

(
Dp − Db

)
ωs

2Dp
(24)  

where DpandDbare the pitch and roller diameters of the bearing, 
respectively. Then, the contact interference of each roller is. 

δj =
(
xs − xp

)
cosϕj +

(
ys − yp

)
sinϕj − cf − d (25) 

Fig. 6. Four-DOF fault signal generation simulating model.  
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where cf − d represents the spall depth caused by a fault. cf − d determines 
the corresponding vibration signal forms of the different fault types. We 
then discuss thecf − d construction methods for the three fault types. cf − d 

has an approximate expression of the step function, which can be used to 
create a learnable equation library. 

3.4.1. Outer race spall 
A spall of a depth (cf − d) over an angular distance of (△ϕd) is 

modeled to simulate the contact loss at a defined angular position 
ϕouter: 

cf − d− outer =

⎛

⎝ − 1 −
1

1 − e
100(ϕj − ϕouter − 2π+ϕd/20)

△ϕd

+
1

1 − e
100(ϕj − ϕouter+19∗ϕd/20)

△ϕd

⎞

⎠× 10− 5

(26)  

where ϕouteris the outer-race angular failure location, which is in the 
direction of the external force, and △ϕd is the angular fault area. 

3.4.2. Inner race spall 
Different from the outer race spall is fixed in location, an inner race 

spall rotates at the same speed as the rotor, then, cf − d− inneras followed: 

cf − d− inner =

⎛

⎝ − 1 −
1

1 − e
100(ϕj − ϕs − ϕinner − 2π+△ϕd/20)

△ϕd

+
1

1 − e
100(ϕj − ϕs − ϕinner+19∗△ϕd/20)

△ϕd

⎞

⎠

× 10− 5

(27)  

where ϕouteris the inner race angular failure location because the inner 
race location is unknown. ϕouteris a trainable variable andϕs is the 
angular position of the bearing’s shaft (inner race). 

3.4.3. Roller spall 
The position of the spall is associated with the speed of the shaft 

speed. This means that the rolling element faults share some charac
teristics with faults on the inner race, which differs from the faults 
associated with the outer race (fixed location). 

The loss of contact is detected for only the faulty rolling element k, 
and the contact loss appears twice for each complete rotation of that 
rolling element. And the curvature between the inner race and outer 
race is different. Therefore, the twice contact loss and contact periods 
are also different. The inner race will contact deeper and longer 
compared to the outer race. Therefore, the contact loss cf − d− roller can be 
described as follows: 

cf − d− roller=

⎡

⎣

⎛

⎝− 1−
1

1− e
100(ϕspin − 2π+△ϕd− outer/20)

△ϕd− outer

+
1

1− e
100(ϕspin+19∗ϕd− outer/20)

△ϕd− outer

⎞

⎠

×
cdr+cdi

cdr − cdo
+

⎛

⎝− 1−
1

1− e
100(ϕspin − 2π+△ϕd− inner/20)

△ϕd− inner

+
1

1− e
100(ϕspin+19∗ϕd− inner/20)

△ϕd− inner

⎞

⎠

⎤

⎦×10− 5

(28)  

where Cdr = Db/2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Db/2)2 − xrs2
√

,Cdi = ri −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
i − xrs2

√

,ri =

(Dp − Db)/2,Cdo = ro −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2
o − xrs2

√
,△ϕd− outer = 2xrs/ro, △ϕd− inner =

2xrs/ri, andxrsrepresent half of the roller spalling area (as Fig. 7(b) 
shows). ϕspin is the ball spall spin location, governed by ϕspin = ωspint +
ϕspin0. ϕspin0 is the roller spin initial position (trainable value). ωspin 

followed: 

ωspin = ωsDp

/
2Db

(
1 −

(
Db

/
Dpcosα

)2
)

(29)  

whereαis bearing contact angle, in this paper, α = 0. 
In this study, the candidate terms of the equation library Θ(z, ż)are 

calculated from the coordinate encoder output z and its deviation ż. z =

[z1, z2, z3, z4]corresponds with ys,xs, yp, xp respectively. To achieve an 
effective fault diagnosis, we calculate the fault-bearing dynamic force 
terms, including inner race, outer race, and rollers’ fault types. The fault- 
bearing dynamic force terms are calculated by Eqs.10–18, symbolized as 
fx− outer, fy− outer, fx− inner, fy− inner, fx− roller, fy− roller. Then, the equations library 
Θ is a 15 columns matrix: 

Θ =
[
1, z, ż, fx− outer, fy− outer, fx− inner, fy− inner, fx− roller, fy− roller

]
(30) 

After building the equation library Θ, the fault-bearing dynamic 
differential equation can be constructed by combining it with the sparse 
matrix Ξ: 

z̈ = ΘΞ (31) 

Eq.(31) is a simplified form of Eq.(21). The details of Eq.(31) is: 

z̈=
[
ẍs,ÿs,ẍp,ÿp

]′

=Θ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −
ks

ms
0 0 0 000 0

winner

ms
0

wouter

ms
0

wroller

ms
0

00 −
ks

ms
0 0 000 0 0

winner

ms
0

wouter

ms
0

wroller

ms

00 0 −
ks

mp
0 00 −

cp

mp
0

winner

mp
0

wouter

mp
0

wroller

mp
0

00 0 0 −
ks

mp
000 −

cp

mp
0

winner

mp
0

wouter

mp
0

wroller

mp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32) 

We transmit the term 1
ms

& 1
mp 

to Θ, to simplify the sparse matrix Ξin the 
actual operation process. Finally, we can obtain the diagnosis results 
according to which fault-type bearing-fault dynamic force term in the 
sparse matrix Ξ. The larger the weight value, the larger the possible fault 
type corresponding to the weight. 

For diagnosis directly, the weights’ sum of fault-bearing dynamic 
force terms is one via SoftMax function. Therefore, we can obtain the 
fault type of input signal via the maximum weight of the fault-bearing 
dynamic force term. 

3.5. The overall structure and optimization stareragay 

The process of BYOLDIS training and bearing fault diagnosis can be 
summarized in the following Algorithm 1. Fig. 7. cf − d approximate construction and fault-roller geometric attribute.  
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Algorithm 1. BYOLDIS training and diagnosis. 

4. Simulation and experimental study 

4.1. Simulated and experimented with fault-bearing signal 

Three fault-simulating signals (outer race, inner race, and roller 
faults) are utilized to verify the effect of the proposed BYOLDIS. The 
signal is generated using a five-DOF fault-bearing system [42,43]. Fig. 8 
shows the five-DOF fault-bearing system. This five-DOF model adds a 
mass-spring system to simulate a typical high-frequency resonant 
response of the bearing (stiffness and damping selected to excite a 
15 kHz frequency with 5% damping) and adds 3000 N external forces F 
in the shaft to simulate the loaded condition. The following equation 
governs this five-DOF fault-bearing system: 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

msẍs + ks(xs) + fx
( (

xs − xp
)
,ωs, dt

)
− F = 0

ms(ÿs + 9.8) + ks(ys) + fy
( (

ys − yp
)
,ωs, dt

)
= 0

mpẍp +
(
cp + cr

)
ẋp +

(
kp + kr

)(
xp
)
− krxb − fx

( (
xs − xp

)
,ωs, dt

)
= 0

mpÿp + cpẏp + kp
(
yp
)
− fy

( (
ys − yp

)
,ωs, dt

)
= 0

mrẍb + kr
(
xb − xp

)
+ cr

(
ẋb − ẋp

)
= 0

(33) 

The detailed parameters of the simulation model are presented in  
Table 2. It should be noted that the vibration signal is collected for the 
output of the mass-spring system (ẍb). ẍb which contains noise from high- 
frequency resonance, which is similar to the real fault-bearing vibration 
signal. dtdenotes the simulated signal’s sampling time. The vibration 
signal has a sampling rate of 25600 Hz and a shaft speed ωs = 1200rpm. 

Besides, the experiment signal is supported by Case Western Reserve 
University [44]. The sampling frequency is 10000 Hz, the speed is 
1797 rpm, 0 load, the bearing is SKF 6205, and the signal is collected 
from the drive end bearing. 

4.2. Implementation details of the experiment 

The BYOLDIS network is implemented based on the TensorFlow 
framework. During the training network process, we utilize the same 

Fig. 8. Five-DOF fault signal generation simulating model.  

Table 2 
Parameter detail of the simulating model.  

Statement of unit: 
m(kg),k(N/m), c(Ns/m),ϕ(rad),x(m),D(m)

mp 12.64 kp 1.51× 107 cp 2.21× 103 

mr 1 kr 8.88× 109 cr 9.42× 103 

ms 0.51 ks 4.24× 106 nb 9 
kb 1.89× 1010 △ϕd 1.92× 10− 2 xrs . 
Db 7.94× 10− 3 Dp 3.90× 10− 2 dt 3.91× 10− 5  
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value hyperparameters for all experiments described below. τ is set 
using the cosine rate change equation in[36], as shown in Eq. (4). εbase is 
set to 0.995. k denotes the current epoch and Kdenotes the maximum 
number of epoch. 

ε = 1 −
(1 − εbase) ×

(

cos
(

πk
K

)

+ 1
)

2
(34) 

The learning rate η of training includes the warm-up cosine decay 
schedule. The base learning rate ηbase is set to 0.1 for the simulated signal 
and set to 0.5 for the collected signal, and the warm-up iteration period 
is set to 100. The learning rate decay schedule formula is shown in Eq. 
(35), which i denotes the iteration turn, K denotes the maximum number 
of iterations: 

η =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηbase

P
× i, i = 1, 2, .,P

ηbase ×

(

1 + cos
(

iπ
K

))

2
, i = P + 1,P + 2, .,K

(35) 

The iteration number is set to 1000 and we are collecting signals at qτ 
= 0.5s. Eq.(22) is the initial value of the sparse matrix Ξ. F is the 
external forces for the simulated signalF = 3000,λ = [1, 10, 10, 1]while 
for the experiment signal F = 0,λ = [1,100,100,1]. And the fault area is 
set to 1 mm, kb which is set 1.8 × 1010 when calculating the contact 
forces. 
⎡

⎢
⎢
⎣

F − 106 0 0 0 000 0 0.330 0.330 0.330
9.80 − 106 0 0 000 0 0 0.330 0.330 0.33
0 0 0 − 106 0 00 − 102 0 0.030 0.030 0.030
0 0 0 0 − 106 000 − 102 0 0.030 0.030 0.03

⎤

⎥
⎥
⎦ (36) 

Considering that the exact values of the modulus of elasticity and 
other parameters are unknown in the real situation, the initial values of 
the sparse matrix Ξ are only accurate to the order of magnitude. 
BYOLDIS aims to realize fault diagnosis rather than accurate dynamic 
model discovery. The equation library Θ is based on the four-DOF sys
tem, which is more conducive to the gradient update of the BYOLDIS 
than the five-DOF system library. 

4.3. Simulated signal diagnosis results and analysis 

In this Section, we demonstrate the ability of the proposed BYOLDIS 
network to automatic fault diagnosis, and we apply the algorithm to the 
following systems: the inner race fault-bearing system, the outer race 
fault-bearing system, and the roller fault-bearing system. These systems’ 

information follows the description of Section 4.1. z = [z1, z2, z3,

z4]corresponds to DOFys,xs, yp, xpin the library Θ, respectively. The 
second-order deviation z̈4 is from ẍbin Eq.(33). 

4.3.1. Inner race fault-bearing diagnosis 
The inner-race fault-bearing signal generated system of the equations 

ẍb is given by substituting Table 2 into Eq.(37): 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍs + 8.31 × 106xs + 1.96fx− inner − 5.88 × 103 = 0
ÿs + 8.31 × 106ys + 1.96fy− inner − 19.21 = 0
ẍp + 9.18 × 102ẋp + 7.04 × 108xp − 7.03 × 108xb − 0.08fx− inner = 0
ÿp + 1.75 × 102ẏp + 1.19 × 106yp − 0.08fy− inner = 0
ẍb + 8.88 × 109( xb − xp

)
+ 9.42 × 103( ẋb − ẋp

)
= 0

(37) 

After BYOLDIS model training, the reconstructed system for the 
input vibration signal ẍ is given by the sparse output matrix Ξ, the 
equation form of Ξ is:   

As shown in Eq. (38), the inner-race fault force term obtains the 
maximum weight in the reconstructed system. According to the recon
structed system, we can confirm that the diagnosis result is an inner-race 
fault for the vibration signal ẍ. However, the reconstructed system’s 
parameter details differ from the inner race fault-bearing signal-gener
ated system. This shows that BYOLDIS cannot achieve accurate system 
reconstruction but is sufficient for bearing fault diagnosis. 

Fig. 9 shows that input ẍ is nearly perfectly reconstructed at the 
output of the coordination encoder’s last dimension z̈4 and also can be 
nearly perfectly reconstructed by the last dimension of z̈4, which is 
calculated via z̈ = ΘΞ. It shows that the proposal can effectively capture 
the crucial dynamic system information of the inner race fault-bearing 
vibration signal, so the diagnosis result is reliable and interpretable. 

Outer race fault-bearing diagnosis 
The outer-race fault-bearing signal generated system of the equations 

for ẍb is given by Eq.(37), the dynamic force terms are fx− outerand fy− outer. 
After BYOLDIS model training, the reconstructed system for the input 
vibration signal ẍ from the ẍb is given by the sparse output matrix Ξ, the 
equation form of Ξ is:  

As shown in Eq. (39), the outer race fault force term obtains the 
maximum weight in the reconstructed system; therefore, we can confirm 
that the diagnosis result is the outer race fault. Fig. 10 shows that 
BYOLDIS can also effectively capture the crucial dynamic system 

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 1 × 106xs + 0.50fx− inner + 0.25fx− outer + 0.25fx− roller − 3.07 × 103 = 0
ÿs + 9.99 × 105ys + 0.50fy− inner + 0.25fy− outer + 0.25fy− roller + 8.86 × 10 = 0
ẍp − 5.35 × 103ẋp + 1 × 106xp − 0.05fx− inner − 0.03fx− outer − 0.03fx− roller + 1.60 × 10 = 0
ÿp − 1.30 × 102ẏp + 9.97 × 105yp − 0.05fy− inner − 0.03fy− outer − 0.03fy− roller + 1.20 × 102 = 0

(38)   

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 1 × 106xs + 0.27fx− inner + 0.43fx− outer + 0.29fx− inner − 3.03 × 103 = 0
ÿs + 1 × 106ys + 0.27fy− inner + 0.43fy− outer + 0.29fy− roller − 1.47 × 10 = 0
ẍp − 4.35 × 103ẋp + 9.96 × 105xp − 0.03fx− inner − 0.04fx− outer − 0.03fx− roller + 2.23 × 102 = 0
ÿp − 4.82 × 10ẏp + 1 × 106yp − 0.03fy− inner − 0.04fy− outer − 0.03fy− roller + 3.66 × 10 = 0

(39)   

S. Sun et al.                                                                                                                                                                                                                                      



ISA Transactions 144 (2024) 436–451

446

information of the outer-race fault-bearing vibration signal. 

4.3.2. Roller fault-bearing diagnosis 
The roller fault-bearing signal generated system of the equations for 

ẍb is given by Eq.(31). The dynamic force arefx− rollerand fy− roller. After 

BYOLDIS model training, the reconstructed system for the input vibra
tion signal ẍ from the ẍb is given by the sparse output matrix Ξ, the 
equation form of Ξ is:   

Fig. 9. The reconstruction signal and the before->after training comparison of BYOLDIS from inner race fault-bearing vibration signal.  

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 1 × 106xs + 0.28fx− inner + 0.33fx− outer + 0.39fx− roller − 2.96 × 103 = 0
ÿs + 9.99 × 105ys + 0.28fy− inner + 0.33fy− outer + 0.39fy− roller + 3.60 × 10 = 0
ẍp − 5.31 × 103ẋp + 1 × 106xp − 0.03fx− inner − 0.03fx− outer − 0.04fx− roller − 2.79 × 102 = 0
ÿp − 3.55 × 102ẏp + 9.99 × 105yp − 0.03fy− inner − 0.03fy− outer − 0.04fy− roller + 1.35 × 102 = 0

(40)   

Fig. 10. The reconstruction signal and the before->after training comparison of BYOLDIS from outer race fault-bearing vibration signal.  
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As shown in Eq.(40), the roller fault force term has the max weight, 
around 0.39 and 0.04, so the proposed method classified it as the roller 
fault. Fig. 11 shows that BYOLDIS can also effectively capture the crucial 
dynamic system information of the roller fault-bearing vibration signal. 

4.4. Experiment signal diagnosis results 

Diagnosis results of the proposal are shown from the experiment 
signal: inner race fault, outer race fault, and roller fault. 

4.4.1. Inner race fault-bearing diagnosis 
After BYOLDIS model training, the reconstructed system for the 

input vibration signal ẍ is given by the sparse output matrix Ξ; the 
equation form Ξ is:  

As shown in Eq.(41), the inner-race fault force term obtains the 
maximum weight in the reconstructed system. Fig. 12 shows that 
BYOLDIS can deal with the real vibration signal. 

4.4.2. Outer race fault-bearing diagnosis 
After BYOLDIS model training, the reconstructed system for the 

input vibration signal ẍ from the ẍb is given by the output sparse matrix 
Ξ, the equation form of Ξ is:  

As shown in Eq.(42) & Fig. 13, the roller fault force term obtains the 
maximum weight in the reconstructed system; therefore, the diagnosis 
result is outer race fault. 

4.4.3. Roller fault-bearing diagnosis 
After BYOLDIS model training, the reconstructed system for the 

input vibration signal ẍ from the ẍb is given by the output sparse matrix 
Ξ, the equation form of Ξ is:  

As shown in Eq.(43) & Fig. 14, the roller fault force term obtains the 
maximum weight in the reconstructed system; therefore, the diagnosis 
result is roller fault. 

4.5. Discussions and limitations 

Take the experiment bearing outer race failure signal as an example 
to discuss the function of the BYOLDIS each loss term. As Table 3 shows 
the inner race, outer race and the roller fault contact force weight of the 
sparse output matrix Ξ with different BYOLDIS structure. Table 3 in
dicates that the loss term L z̈4 and L z̈4

play an importance role on the 
BYOLDIS training. Without those two loss term, the diagnosis result 
from the reconstructed force weight is wrong. comparing with the loss 
term L z̈, L z4 and the BYOL network structure, loss terms L z̈ and L z4 

have made the greatest contribution to the reconstruction fault force 
weight required for fault diagnosis. This is because these two loss items 
directly compare the reconstructed signal with the vibration signal, 
providing the most reliable information for the network to perform 
signal reconstruction. Beside, L z̈, L z4 and the BYOL network structure 

also can help BYOLDIS network achieve effective signal reconstruction 
and diagnosis result output. 

Taking the experiment bearing signal of outer race failure as an 
example, Fig. 15 shows the reconstruction dynamic signal has a similar 
signal shape with the input signal, and the spectral characteristics are 
the same as the input signal. It indicates that the BYOLDIS achieves input 
signal system reconstruction to capture dynamic information for bearing 
fault diagnosis. Besides, when the BYOLDIS have not the loss term L z̈4

, 

the reconstruct dynamic signal spectrum can observe thehigh-frequency 
information loss and contains an extremely low frequency signal 
component. This indicates that insufficient reconstruction information 
was not obtained during the network reconstruction process, which can 
also explain why the fault diagnosis result obtained by reconstruction 
system after removing loss item L z̈4 

is incorrect. 
The experiments indicate that the dynamics embedding neural 

network is a feasible solution for dealing with the data lacking issue in 
machine fault diagnosis. Although this paper only discusses the bearing 

fault diagnosis, we consider that the method can extrapolate to other 
mechanical systems that can be established as second-order differential 
equations. 

At the same time, this method still has some limitations, which also 

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 1 × 106xs + 0.56fx− inner + 0.13fx− outer + 0.31fx− roller + 2.76 = 0
ÿs + 9.77 × 105ys + 0.56fy− inner + 0.13fy− outer + 0.31fy− roller + 7.05 × 10 = 0
ẍp + 6.87ẋp + 9.87 × 105xp − 0.06fx− inner − 0.01fx− outer − 0.03fx− roller + 1.31 × 10 = 0
ÿp + 64.5ẏp + 9.84 × 105yp − 0.06fy− inner − 0.01fy− outer − 0.03fy− roller − 1.61 × 102 = 0

(41)   

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 9.92 × 105xs + 0.13fx− inner + 0.63fx− outer + 0.25fx− roller + 7.21 = 0
ÿs + 9.80 × 105ys + 0.13fy− inner + 0.63fy− outer + 0.25fy− roller + 7.78 × 10 = 0
ẍp + 1.06 × 103ẋp + 1.01 × 106xp − 0.01fx− inner − 0.06fx− outer − 0.03fx− roller + 2.73 × 10 = 0
ÿp + 66.7ẏp + 9.96 × 105yp − 0.01fy− inner − 0.06fy− outer − 0.03fy− roller + 6.94 × 102 = 0

(42)   

⎧
⎪⎪⎨

⎪⎪⎩

ẍs + 1.01 × 106xs + 0.25fx− inner + 0.14fx− outer + 0.61fx− roller + 3.55 × 10 = 0
ÿs + 1.01 × 106ys + 0.25fy− inner + 0.14fy− outer + 0.61fy− roller + 8.58 × 10 = 0
ẍp + 9.13 × 10ẋp + 9.93 × 105xp − 0.03fx− inner − 0.01fx− outer − 0.06fx− roller + 7.24 × 10 = 0
ÿp + 6.63 × 103ẏp + 9.92 × 105yp − 0.03fy− inner − 0.01fy− outer − 0.06fy− roller + 2.44 = 0

(43)   
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are our future research direction. The first limitation is the gradient 
explosion. The coordinate encoder needs to generate the displacement, 
velocity, and acceleration information using the same network weights, 
and the magnitude order difference of displacement and acceleration is 
up to 107. Therefore, this numerical difference can easily lead to 
gradient explosion in the training process. The second limitation is that 
it cannot diagnose a signal from a bearing that has a compound fault 
type. The reason is that the embedding fault-bearing muti-body contact 
dynamics system of BYOLDIS needs to be simplified to conduct accuracy 
dynamics system reconstruction. The principal summary of the proposed 
diagnosis method is to capture the critical information of the signal- 
governed dynamic system, which is achieved by selecting one of the 
three embedded fault-bearing models (SoftMax) to realize fault diag

nosis. The third limitation is the time cost, the current training of the 
model for obtaining diagnosis results needs 6 min, and the time cost is 
high. 

4.6. Potential applications 

The BYOLDIS (Bootstrap Your Own Latent and Dynamical Systems 
Model Discovery) method offers many potential applications, primarily 
in fault diagnosis and system monitoring within industrial and me
chanical systems. This innovative approach presents a unique set of 
capabilities that can significantly enhance the reliability and efficiency 
of various operations across different industries. Below, we delve into 
some specific applications that exemplify the versatility and potential of 

Fig. 11. The reconstruction signal the before->after training comparison of BYOLDIS from roller fault-bearing vibration signal.  

Fig. 12. The reconstruction signal the before->after training comparison of BYOLDIS from experiment inner race fault-bearing vibration signal.  
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BYOLDIS, shown in Fig. 16. All of them are rotary machines, like 
bearings, gearboxes, wind turbines, etc: 

4.6.1. Bearings fault diagnosis 
One of the primary applications of BYOLDIS lies in bearings fault 

diagnosis. In the context of rotating machinery, such as industrial mo
tors, conveyor systems, and pumps, BYOLDIS proves invaluable. It ex
cels at scrutinizing vibration signals emitted by bearings, effortlessly 
identifying and categorizing many faults. From wear and tear to 
misalignment and imbalance issues, BYOLDIS provides a comprehensive 
understanding of the bearing’s health, allowing for timely maintenance 
and preventing costly breakdowns. 

Fig. 13. The reconstruction signal the before->after training comparison of BYOLDIS from experiment outer race fault-bearing vibration signal.  

Fig. 14. The reconstruction signal the before->after training comparison of BYOLDIS from experiment roller fault-bearing vibration signal.  

Table 3 
Influence of each loss term of BYOLDIS.  

BYOLDIS structure/force weight Inner race Outer race Roller 

Orginal  0.13  0.63  0.25 
Without BYOL structure  0.15  0.58  0.26 
WithoutL z̈  0.14  0.52  0.33 
WithoutL z̈4  

0.14  0.50  0.36 
WithoutL z̈4  

0.17  0.27  0.56 
WithoutL z̈4  

0.19  0.26  0.55 
Only BYOL  0.33  0.33  0.33  
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4.6.2. Gearbox health monitoring 
Gears are ubiquitous components within machinery across in

dustries, and their proper functioning is critical. BYOLDIS steps in as an 
adept gearbox health monitor. It diligently analyzes vibration data 
emanating from gearboxes, keeping a watchful eye on their condition. It 
can flag problems such as gear wear, tooth damage, and lubrication is
sues early in their development, mitigating potential catastrophes and 
minimizing downtime. 

4.6.3. Wind turbine health assessment 
In the renewable energy sector, wind turbines are vital for power 

generation, and their health directly impacts energy output and effi
ciency. Continuous monitoring is paramount to ensure optimal perfor
mance. BYOLDIS can proficiently scrutinize vibration signals generated 
by wind turbines, making it adept at detecting and diagnosing faults 
within various components. From gearboxes to bearings and blades, 
BYOLDIS aids in the proactive maintenance of these critical assets, 
enhancing turbine longevity and energy production. 

5. Conclusion 

This paper proposes a BYOLDIS network for fault-bearing vibration 
signal diagnosis. This method utilizes a BYOL contrastive learning 

framework combined with a library of fault-bearing dynamic poly
nomial equations that offer physical model-based prior constraints 
(dynamics embedding neural network). The findings can be summarized 
as follows: (1) Three experiments show that BYOLDIS can conduct label- 
free fault diagnosis well. The data dependence of the neural networks 
has been successfully removed. The proposed method can capture the 
vital fault physical characteristics of the input vibration signal for 
diagnosis. (2) BYOLDIS can effectively reconstruct the vibration impulse 
response from an input signal. (3) BYOLDIS can capture the essential 
physical characteristics of incoming vibration signals for conducting the 
diagnosis and the signals’ physical characteristics can explain the fault 
occurrence principle. This indicates that the coordinate encoder of 
BYOLDIS can effectively map the partial dynamic information (1DOF) 
into the completed system dynamic information (4DOF). The recon
structed fault-bearing system equations contain crucial dynamic system 
information about the input signal. Therefore, the proposed BYOLDIS 
can effectively extract the fault dynamic equation characteristics, and 
the dynamic interpretation of the BYOLDIS diagnosis results is reliable. 
The proposed method can generally be considered promising for bearing 
fault diagnosis. 

Fig. 15. The comparison of the input signal reconstruction dynamic signal and reconstruction dynamic signal without L z̈4
.  

Fig. 16. BYOLDIS potential application field.  
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